A novel hybrid inception-xception convolutional neural network for efficient plant disease classification and detection

被引:0
|
作者
Shafik, Wasswa [1 ,2 ]
Tufail, Ali [2 ]
De Silva, Chandratilak Liyanage [2 ]
Apong, Rosyzie Anna Awg Haji Mohd [2 ]
机构
[1] Dig Connect Res Lab DCRLab, POB 600040, Kampala, Uganda
[2] Univ Brunei Darussalam, Sch Digital Sci, Jalan Tungku Link,BE1410, Gadong, Brunei
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Zero hunger; Climate action; Computer vision; Machine learning; Plant disease detection; Good health and well-being; Plant disease classification; Life on land;
D O I
10.1038/s41598-024-82857-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plants are essential at all stages of living things. Plant pests, diseases, and symptoms are most regularly visible in plant leaves and fruits and sometimes within the roots. Yet, their diagnosis by experts in the laboratory is expensive, tedious, and time-consuming if the samples involve laboratory analysis. Failure to detect early plant symptoms and diseases is the core biotic cause of increased plant stresses, structure, health, reduced subsistence farming, and threats to global food security. To mitigate these problems at a social, economic, and environmental level, inappropriate herbicide application reduction and early plant disease detection and classification (PDDC) are significant solutions in this case. Advancements in transfer learning techniques have resulted in effective results in smart farming and have become extensively used in disease identification and classification research studies. This study presents a novel hybrid inception-xception (IX) using a convolution neural network (CNN). The presented model combines inception and depth-separable convolution layers to capture multiple-scale features while reducing model complexity and overfitting. In contrast to ordinary CNN architectures, it extends the network for better feature extraction, improving PDDC performance that demands diverse feature competencies. It further presents a real-time artificial intelligence (AI) application available in MATLAB, Android, and Servlet to automatically identify and classify diseases based on the leaf environment using improved CNN, machine learning (ML), and computer vision techniques. To assess the presented IX-CNN model performance, different classifiers, namely, support vector machine (SVM), decision tree (DT) and random forest (RF), were used. The experiments used six datasets, including PlantVillage, Turkey Disease, Plant Doc, Rice Disease, RoCole, and NLB datasets. Plant Doc, PlantVillage, and Turkey Disease datasets demonstrated an accuracy of 100%. Rice Disease, RoCole, and NLB attained an accuracy of 99.79%, 99.95%, and 98.64%, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Detection and classification of gastrointestinal disease using convolutional neural network and SVM
    Haile, Melaku Bitew
    Salau, Ayodeji Olalekan
    Enyew, Belay
    Belay, Abebech Jenber
    COGENT ENGINEERING, 2022, 9 (01):
  • [32] AlexNet Convolutional Neural Network for Disease Detection and Classification of Tomato Leaf
    Chen, Hsing-Chung
    Widodo, Agung Mulyo
    Wisnujati, Andika
    Rahaman, Mosiur
    Lin, Jerry Chun-Wei
    Chen, Liukui
    Weng, Chien-Erh
    ELECTRONICS, 2022, 11 (06)
  • [33] Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network
    Sakkarvarthi, Gnanavel
    Sathianesan, Godfrey Winster
    Murugan, Vetri Selvan
    Reddy, Avulapalli Jayaram
    Jayagopal, Prabhu
    Elsisi, Mahmoud
    ELECTRONICS, 2022, 11 (21)
  • [34] An efficient glioma classification and grade detection using hybrid convolutional neural network-based SVM model
    Shargunam, S.
    Rajakumar, G.
    IMAGING SCIENCE JOURNAL, 2024, 72 (01): : 1 - 22
  • [35] A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection
    Pandian, J. Arun
    Kanchanadevi, K.
    Kumar, V. Dhilip
    Jasinska, Elzbieta
    Gono, Radomir
    Leonowicz, Zbigniew
    Jasinski, Michal
    ELECTRONICS, 2022, 11 (08)
  • [36] A novel approach for rice plant diseases classification with deep convolutional neural network
    Upadhyay S.K.
    Kumar A.
    International Journal of Information Technology, 2022, 14 (1) : 185 - 199
  • [37] PlantDiseaseNet: convolutional neural network ensemble for plant disease and pest detection
    Turkoglu, Muammer
    Yanikoglu, Berrin
    Hanbay, Davut
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (02) : 301 - 309
  • [38] PlantDiseaseNet: convolutional neural network ensemble for plant disease and pest detection
    Muammer Turkoglu
    Berrin Yanikoğlu
    Davut Hanbay
    Signal, Image and Video Processing, 2022, 16 : 301 - 309
  • [39] A Novel Optimized Deep Convolutional Neural Network for Efficient Seizure Stage Classification
    Krishnamoorthy, Umapathi
    Jagan, Shanmugam
    Zakariah, Mohammed
    Almazyad, Abdulaziz S.
    Gurunathan, K.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (03): : 3903 - 3926
  • [40] Mammogram classification based on a novel convolutional neural network with efficient channel attention
    Lou, Qiong
    Li, Yingying
    Qian, Yaguan
    Lu, Fang
    Ma, Jinlian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150