Strain-dependent charge trapping and its impact on the operational stability of polymer field-effect transistors

被引:0
|
作者
Park, Sangsik [1 ]
Kim, Seung Hyun [1 ]
Lee, Hansol [2 ]
Cho, Kilwon [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang, South Korea
[2] Gachon Univ, Dept Chem & Biol Engn, Seongnam, South Korea
基金
新加坡国家研究基金会;
关键词
MOBILITY CONJUGATED POLYMER; THIN-FILM TRANSISTORS; J-AGGREGATE BEHAVIOR; GATE-DIELECTRICS; IN-SITU; SEMICONDUCTORS; INSTABILITY; TRANSPORT; DYNAMICS; SHIFTS;
D O I
10.1038/s41528-024-00359-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Despite recent dramatic improvements in the electronic characteristics of stretchable organic field-effect transistors (FETs), their low operational stability remains a bottleneck for their use in practical applications. Here, the operational stability, especially the bias-stress stability, of semiconducting polymer-based FETs under various tensile strains is investigated. Analyses on the structure of stretched semiconducting polymer films and spectroscopic quantification of trapped charges within them reveal the major cause of the strain-dependent bias-stress instability of the FETs. Devices with larger strains exhibit lower stability than those with smaller strains because of the increased water content, which is accompanied by the formation of cracks and nanoscale cavities in the semiconducting polymer film as results of the applied strain. The strain-dependence of bias-stress stability of stretchable OFETs can be eliminated by passivating the devices to avoid penetration of water molecules. This work provides new insights for the development of bias-stable stretchable OFETs.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Contact effects in polymer field-effect transistors
    Natelson, D.
    Hamadani, B. H.
    Ciszek, J. W.
    Corley, D. A.
    Tour, J. M.
    ORGANIC FIELD-EFFECT TRANSISTORS V, 2006, 6336
  • [42] Semiconductor:polymer blend ratio dependent performance and stability in low voltage flexible organic field-effect transistors
    Raghuwanshi, Vivek
    Bharti, Deepak
    Mahato, Ajay Kumar
    Varun, Ishan
    Tiwari, Shree Prakash
    SYNTHETIC METALS, 2018, 236 : 54 - 60
  • [43] Fabrication and analysis of polymer field-effect transistors
    Scheinert, S
    Paasch, G
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2004, 201 (06): : 1263 - 1301
  • [44] Noncontact potentiometry of polymer field-effect transistors
    Bürgi, L
    Sirringhaus, H
    Friend, RH
    APPLIED PHYSICS LETTERS, 2002, 80 (16) : 2913 - 2915
  • [45] Polymer field-effect transistors: Materials and devices
    Li Rongjin
    Li Hongxiang
    Zhou Xinran
    Hu Wenping
    PROGRESS IN CHEMISTRY, 2007, 19 (2-3) : 325 - 336
  • [46] Polymer field-effect transistors by a drawing method
    Nagamatsu, S
    Takashima, W
    Kaneto, K
    Yoshida, Y
    Tanigaki, N
    Yase, K
    APPLIED PHYSICS LETTERS, 2004, 84 (23) : 4608 - 4610
  • [47] The Impact of Grain Boundaries on Charge Transport in Polycrystalline Organic Field-Effect Transistors
    Meier, Tobias
    Baessler, Heinz
    Koehler, Anna
    ADVANCED OPTICAL MATERIALS, 2021, 9 (14):
  • [48] Strain-Modulated Charge Transport in Flexible PbS Nanocrystal Field-Effect Transistors
    Nugraha, Mohamad Insan
    Matsui, Hiroyuki
    Watanabe, Shun
    Kubo, Takayoshi
    Hausermann, Roger
    Bisri, Satria Zulkarnaen
    Sytnyk, Mykhailo
    Heiss, Wolfgang
    Loi, Maria Antonietta
    Takeya, Jun
    ADVANCED ELECTRONIC MATERIALS, 2017, 3 (01):
  • [49] Two-dimensional charge transport in molecularly ordered polymer field-effect transistors
    D'Innocenzo, V.
    Luzio, A.
    Abdalla, H.
    Fabiano, S.
    Loi, M. A.
    Natali, D.
    Petrozza, A.
    Kemerink, M.
    Caironi, M.
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (47) : 11135 - 11142
  • [50] Monte Carlo simulations of charge carrier mobility in semiconducting polymer field-effect transistors
    Demeyu, Lemi
    Stafstroem, Sven
    Bekele, Mulugeta
    PHYSICAL REVIEW B, 2007, 76 (15)