Electrical output performance of triboelectric nanogenerator based on magnetic high entropy alloy

被引:0
|
作者
Liu, Meng-Nan [1 ]
Wang, Lu-Yao [1 ]
Wang, Peng [1 ]
Wu, Lin-Xin [1 ]
Yin, Fang [1 ]
Zhang, Jun [1 ]
Long, Yun-Ze [1 ,2 ]
机构
[1] Qingdao Univ, Coll Phys, Collaborat Innovat Ctr Nanomat & Devices, Qingdao 266071, Peoples R China
[2] Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao 266071, Peoples R China
来源
RARE METALS | 2025年
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; TENG; Magnetic; High-entropy alloy; HEA; ENERGY;
D O I
10.1007/s12598-024-03112-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although traditional soft magnetic materials have been investigated to improve triboelectric nanogenerator (TENG) performance, their electrical output performance remains insufficient. Magnetic high-entropy alloys (HEAs), a new type of magnetic functional material, possess excellent mechanical and magnetic properties. However, the electrical characteristics of TENGs based on magnetic HEAs remain unexplored. Therefore, a TENG based on polyvinylidene fluoride/HEA-polyamide 66 (PHP-TENG) is proposed in this study. The coupling of displacement current from the polarization field and magnetization current generated by time-varying electric-field magnetization of magnetic HEAs can improve the electrical characteristics of TENGs. The maximum voltage, current, and power density of the PHP-TENG are 156.34 V, 1.56 mu A, and 188.40 mW<middle dot>m-2, respectively. PHP-TENG maintains a stable current output even after 20,000 cycles. Furthermore, it can power a 47 mu F commercial capacitor to 2.5 V in 70 s and propel a hygrometer to function normally. In addition, PHP-TENG exhibits satisfactory sensitivity to humidity. These results indicate that TENGs based on magnetic HEAs exhibit potential for high-efficiency energy-collecting devices. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(TENG)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(HEAs)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic), (sic)(sic)(sic)(sic)HEAs(sic)TENGs(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)PVDF/HAE-PA66(sic)TENG(PHP-TENG).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)HEAs(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)TENGs(sic)(sic)(sic)(sic)(sic).PHP-TENG(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)156.34 V, 1.56 mu A(sic)188.40 mW<middle dot>m-2, (sic)(sic)(sic)20,000(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)70 s(sic)(sic)(sic)(sic)47 mu F(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)2.5 V, (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)HEAs(sic)TENGs(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
引用
收藏
页码:2547 / 2563
页数:17
相关论文
共 50 条
  • [21] Enhancing Output Performance of Triboelectric Nanogenerator via Charge Clamping
    Wang, Jianlong
    Yu, Xin
    Zhao, Da
    Yu, Yang
    Gao, Qi
    Cheng, Tinghai
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2021, 11 (31)
  • [22] Design and output performance of vibration energy harvesting triboelectric nanogenerator
    Wu Ye-Sheng
    Liu Qi
    Cao Jie
    Li Kai
    Cheng Guang-Gui
    Zhang Zhong-Qiang
    Ding Jian-Ning
    Jiang Shi-Yu
    ACTA PHYSICA SINICA, 2019, 68 (19)
  • [23] Cellulose-based fabrics triboelectric nanogenerator: Effect of fabric microstructure on its electrical output
    Khwanming, Rawiwan
    Pongampai, Satana
    Vittayakorn, Naratip
    Charoonsuk, Thitirat
    JOURNAL OF METALS MATERIALS AND MINERALS, 2023, 33 (03):
  • [24] High performance temperature difference triboelectric nanogenerator
    Bolang Cheng
    Qi Xu
    Yaqin Ding
    Suo Bai
    Xiaofeng Jia
    Yangdianchen Yu
    Juan Wen
    Yong Qin
    Nature Communications, 12
  • [25] High performance temperature difference triboelectric nanogenerator
    Cheng, Bolang
    Xu, Qi
    Ding, Yaqin
    Bai, Suo
    Jia, Xiaofeng
    Yu, Yangdianchen
    Wen, Juan
    Qin, Yong
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [26] Electret-Doped Polarized Nanofiber Triboelectric Nanogenerator with Enhanced Electrical Output Performance Based on a Micro-Waveform Structure
    Zhou, Yuman
    Tao, Xuejiao
    Wang, Zequn
    An, Meng
    Qi, Kun
    Ou, Kangkang
    He, Jianxin
    Wang, Rongwu
    Chen, Xiaogang
    Dai, Zhao
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (05) : 2473 - 2480
  • [27] An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment
    Guo, Hengyu
    Chen, Jun
    Yeh, Min-Hsin
    Fan, Xing
    Wen, Zhen
    Li, Zhaoling
    Hu, Chenguo
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (05) : 5577 - 5584
  • [28] A high-output silk-based triboelectric nanogenerator with durability and humidity resistance
    He, Lixia
    Zhang, Chuguo
    Zhang, Baofeng
    Gao, Yikui
    Yuan, Wei
    Li, Xinyuan
    Zhou, Linglin
    Zhao, Zhihao
    Wang, Zhong Lin
    Wang, Jie
    NANO ENERGY, 2023, 108
  • [29] Engineering Triboelectric Charge in Natural Rubber-Ag Nanocomposite for Enhancing Electrical Output of a Triboelectric Nanogenerator
    Appamato, Intuorn
    Bunriw, Weeraya
    Harnchana, Viyada
    Siriwong, Chomsri
    Mongkolthanaruk, Wiyada
    Thongbai, Prasit
    Chanthad, Chalathorn
    Chompoosor, Apiwat
    Ruangchai, Sukhum
    Prada, Teerayut
    Amornkitbamrung, Vittaya
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (01) : 973 - 983
  • [30] A high-output performance mortise and tenon structure triboelectric nanogenerator for human motion sensing
    Zhang, Honghao
    Zhang, Ping
    Zhang, Weikang
    NANO ENERGY, 2021, 84