Bayesian model averaging (BMA) for nuclear data evaluation

被引:1
|
作者
Alhassan, E. [1 ]
Rochman, D. [2 ]
Schnabel, G. [3 ]
Koning, A. J. [3 ,4 ]
机构
[1] SCK CEN Belgian Nucl Res Ctr, Boeretang 200, B-2400 Mol, Belgium
[2] Paul Scherrer Inst, Lab Reactor Phys & Thermal Hydraul, CH-5232 Villigen, Switzerland
[3] Int Atom Energy Agcy IAEA, Nucl Data Sect, Vienna, Austria
[4] Uppsala Univ, Dept Phys & Astron, Div Appl Nucl Phys, Uppsala, Sweden
关键词
Bayesian model averaging (BMA); Nuclear data; Nuclear reaction models; Model parameters; TALYS code system; Covariances; UNIFIED MONTE-CARLO; UNCERTAINTY; PARAMETERS; ADJUSTMENT; SELECTION; DEFECTS; REACTOR; IMPACT;
D O I
10.1007/s41365-024-01543-w
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
To ensure agreement between theoretical calculations and experimental data, parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations. This approach assumes that the chosen set of models accurately represents the 'true' distribution of considered observables. Furthermore, the models are chosen globally, indicating their applicability across the entire energy range of interest. However, this approach overlooks uncertainties inherent in the models themselves. In this work, we propose that instead of selecting globally a winning model set and proceeding with it as if it was the 'true' model set, we, instead, take a weighted average over multiple models within a Bayesian model averaging (BMA) framework, each weighted by its posterior probability. The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables. Next, computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions. As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis, the approach typically results in discontinuities or "kinks" in the cross section curves, and these were addressed using spline interpolation. The proposed BMA method was applied to the evaluation of proton-induced reactions on 58Ni between 1 and 100 MeV. The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] An evaluation of prior influence on the predictive ability of Bayesian model averaging
    Véronique St-Louis
    Murray K. Clayton
    Anna M. Pidgeon
    Volker C. Radeloff
    Oecologia, 2012, 168 : 719 - 726
  • [22] An evaluation of prior influence on the predictive ability of Bayesian model averaging
    St-Louis, Veronique
    Clayton, Murray K.
    Pidgeon, Anna M.
    Radeloff, Volker C.
    OECOLOGIA, 2012, 168 (03) : 719 - 726
  • [23] No such thing as the perfect match: Bayesian Model Averaging for treatment evaluation
    Lucchetti, Riccardo
    Pedini, Luca
    Pigini, Claudia
    ECONOMIC MODELLING, 2022, 107
  • [24] IMPROVING NONLINEAR PROCESS MODELING USING MULTIPLE NEURAL NETWORK COMBINATION THROUGH BAYESIAN MODEL AVERAGING (BMA)
    Ahmad, Z.
    Ha, Tang Pick
    Noor, Rabiatul Adawiah Mat
    IIUM ENGINEERING JOURNAL, 2008, 9 (01): : 19 - 36
  • [25] Turning Bayesian Model Averaging Into Bayesian Model Combination
    Monteith, Kristine
    Carroll, James L.
    Seppi, Kevin
    Martinez, Tony
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2657 - 2663
  • [26] Bayesian model selection and model averaging
    Wasserman, L
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) : 92 - 107
  • [27] Clustered Bayesian Model Averaging
    Yu, Qingzhao
    MacEachern, Steven N.
    Peruggia, Mario
    BAYESIAN ANALYSIS, 2013, 8 (04): : 883 - 907
  • [28] Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation
    Parrish, Mark A.
    Moradkhani, Hamid
    DeChant, Caleb M.
    WATER RESOURCES RESEARCH, 2012, 48
  • [29] Bayesian model averaging: A tutorial
    Hoeting, JA
    Madigan, D
    Raftery, AE
    Volinsky, CT
    STATISTICAL SCIENCE, 1999, 14 (04) : 382 - 401
  • [30] A Review of Bayesian Model Averaging
    Hua Peng
    Zhao Xuemin
    DATA PROCESSING AND QUANTITATIVE ECONOMY MODELING, 2010, : 32 - +