Transformer-Based Sensor Fusion for Autonomous Vehicles: A Comprehensive Review

被引:0
|
作者
Abdulmaksoud, Ahmed [1 ]
Ahmed, Ryan [1 ]
机构
[1] McMaster Univ, Ctr Mechatron & Hybrid Technol CMHT, Dept Mech Engn, Hamilton, ON L8S 4L8, Canada
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Sensor fusion; Transformers; Laser radar; Autonomous vehicles; Cameras; Computational modeling; Reviews; Three-dimensional displays; Object detection; Location awareness; Autonomous driving; artificial intelligence (AI); computer vision; deep learning; machine learning; sensor fusion; transformers;
D O I
10.1109/ACCESS.2025.3545032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sensor fusion is vital for many critical applications, including robotics, autonomous driving, aerospace, and beyond. Integrating data streams from different sensors enables us to overcome the intrinsic limitations of each sensor, providing more reliable measurements and reducing uncertainty. Moreover, deep learning-based sensor fusion unlocked the possibility of multimodal learning, which utilizes different sensor modalities to boost object detection. Yet, adverse weather conditions remain a significant challenge to the reliability of sensor fusion. However, introducing the Transformer deep learning model in sensor fusion presents a promising avenue for advancing its sensing capabilities, potentially overcoming that challenge. Transformer models proved powerful in modeling vision, language, and numerous other domains. However, these models suffer from high latency and heavy computation requirements. This paper aims to provide: 1) an extensive overview of sensor fusion and transformer models; 2) an in-depth survey of the state-of-the-art (SoTA) methods for Transformer-based sensor fusion, focusing on camera-LiDAR and camera-radar methods; and 3) a quantitative analysis of the SoTA methods, uncovering research gaps and stimulating future work.
引用
收藏
页码:41822 / 41838
页数:17
相关论文
共 50 条
  • [31] Sensor Fusion-Based Localization Framework for Autonomous Vehicles in Rural Forested Environments
    Matute, Jose
    Rodriguez-Arozamena, Mario
    Perez, Joshue
    Karimoddini, Ali
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 1007 - 1013
  • [32] Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles
    Huihui Pan
    Weichao Sun
    Qiming Sun
    Huijun Gao
    Chinese Journal of Mechanical Engineering, 2021, 34
  • [33] Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles
    Pan, Huihui
    Sun, Weichao
    Sun, Qiming
    Gao, Huijun
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2021, 34 (01)
  • [34] Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles
    Huihui Pan
    Weichao Sun
    Qiming Sun
    Huijun Gao
    Chinese Journal of Mechanical Engineering, 2021, 34 (03) : 171 - 181
  • [35] A Sensor Fusion-Based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
    Dasgupta, Sagar
    Rahman, Mizanur
    Islam, Mhafuzul
    Chowdhury, Mashrur
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23559 - 23572
  • [36] An Open Multi-Sensor Fusion Toolbox for Autonomous Vehicles
    Cano, Abraham Monrroy
    Takeuchi, Eijiro
    Kato, Shinpei
    Edahiro, Masato
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (01) : 252 - 264
  • [38] TIPFNet: a transformer-based infrared polarization image fusion network
    Li, Kunyuan
    Qi, Meibin
    Zhuang, Shuo
    Yang, Yanfang
    Gao, Jun
    OPTICS LETTERS, 2022, 47 (16) : 4255 - 4258
  • [39] Transformer-based Multimodal Information Fusion for Facial Expression Analysis
    Zhang, Wei
    Qiu, Feng
    Wang, Suzhen
    Zeng, Hao
    Zhang, Zhimeng
    An, Rudong
    Ma, Bowen
    Ding, Yu
    IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2022, 2022-June : 2427 - 2436
  • [40] TUFusion: A Transformer-Based Universal Fusion Algorithm for Multimodal Images
    Zhao, Yangyang
    Zheng, Qingchun
    Zhu, Peihao
    Zhang, Xu
    Ma, Wenpeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1712 - 1725