A robust transductive distribution calibration method for few-shot learning

被引:0
|
作者
Li, Jingcong [1 ]
Ye, Chunjin [1 ]
Wang, Fei [1 ]
Pan, Jiahui [1 ]
机构
[1] School of Artificial Intelligence, South China Normal University, Foshan,528200, China
关键词
Adversarial machine learning - Federated learning - Zero-shot learning;
D O I
10.1016/j.patcog.2025.111488
中图分类号
学科分类号
摘要
Few-shot learning (FSL) has gained much attention and has recently made substantial progress. To alleviate the data constraints in FSL, previous studies have attempted to generate features by learning a feature distribution. However, the learned distribution is biased and unstable due to limited labeled data, and the features from it can be even more biased, which decreases its generalizability. This paper proposes a Robust Transductive Distribution Calibration (RTDC) method to estimate feature distributions of few-shot classes in a more accurate and robust way. First, we capture the underlying distribution information by precisely estimating the covariance matrix of each novel category. Second, we consider the distribution similarity between labeled and unlabeled samples using the estimated covariance matrix and then optimize the feature distribution in a transductive manner. Extensive experiments demonstrated the effectiveness and significance of our method on several FSL benchmarks, including miniImageNet, tieredImageNet, CUB, and CIFAR-FS. © 2025 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [32] Proposal Distribution Calibration for Few-Shot Object Detection
    Liu, Chang
    Li, Bohao
    Shi, Mengnan
    Chen, Xiaozhong
    Ji, Xiangyang
    Ye, Qixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 8
  • [33] Calibration Learning for Few-shot Novel Product Description
    Liu, Zheng
    Wu, Mingjing
    Peng, Bo
    Liu, Yichao
    Peng, Qi
    Zou, Chong
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1864 - 1868
  • [34] Iterative label cleaning for transductive and semi-supervised few-shot learning
    Lazarou, Michalis
    Stathaki, Tania
    Avrithis, Yannis
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8731 - 8740
  • [35] Adaptive multi-scale transductive information propagation for few-shot learning
    Fu, Sichao
    Liu, Baodi
    Liu, Weifeng
    Zou, Bin
    You, Xinhua
    Peng, Qinmu
    Jing, Xiao-Yuan
    KNOWLEDGE-BASED SYSTEMS, 2022, 249
  • [36] Ensemble Transductive Propagation Network for Semi-Supervised Few-Shot Learning
    Pan, Xueling
    Li, Guohe
    Zheng, Yifeng
    ENTROPY, 2024, 26 (02)
  • [37] Learning to Capture the Query Distribution for Few-Shot Learning
    Chi, Ziqiu
    Wang, Zhe
    Yang, Mengping
    Li, Dongdong
    Du, Wenli
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4163 - 4173
  • [38] ECKPN: Explicit Class Knowledge Propagation Network for Transductive Few-shot Learning
    Chen, Chaofan
    Yang, Xiaoshan
    Xu, Changsheng
    Huang, Xuhui
    Ma, Zhe
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6592 - 6601
  • [39] Asymmetric Distribution Measure for Few-shot Learning
    Li, Wenbin
    Wang, Lei
    Huo, Jing
    Shi, Yinghuan
    Gao, Yang
    Luo, Jiebo
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2957 - 2963
  • [40] Few-Shot Few-Shot Learning and the role of Spatial Attention
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2693 - 2700