MHEC: One-shot relational learning of knowledge graphs completion based on multi-hop information enhancement

被引:0
|
作者
Ma, Ruixin [1 ,2 ]
Gao, Buyun [1 ,2 ]
Wang, Weihe [1 ,2 ]
Wang, Longfei [1 ,2 ]
Wang, Xiaoru [1 ,2 ]
Zhao, Liang [1 ,2 ]
机构
[1] School of Software Technology, Dalian University of Technology, Dalian, China
[2] The Key Laboratory for Ubiquitous Network and Service of Liaoning Province, Dalian, China
关键词
Contrastive Learning - Federated learning - Graph algorithms - Zero-shot learning;
D O I
10.1016/j.neucom.2024.128760
中图分类号
学科分类号
摘要
With the wide application of knowledge graphs, knowledge graph completion has garnered increasing attention in recent years. However, we find that the long tail relation is more common in the KG. These relations typically do not have a large number of triples for training and are referred to as few-shot relations. The knowledge graph completion in the few-shot scenario is a major challenge currently. The current mainstream knowledge graph completion algorithms have the following drawbacks. The metric-based methods lack interpretability of results, while the algorithms based on path interaction are not suitable for few-shot scenarios and the availability of the model is limited in sparse knowledge graphs. In this paper, we propose a one-shot relational learning of knowledge graphs completion based on multi-hop information enhancement(MHEC). Firstly, MHEC extracts entity concepts from multi-hop paths to obtain task related entity concepts and filters out noisy neighbor attributes. Then, MHEC combines multi-hop path information between head and tail to represent entity pairs. Compared to previous completion methods that only consider structural features of entities, MHEC considers the reasoning logic between entity pairs, which not only includes structural features but also possesses rich semantic features. Next, MHEC introduces a reasoning process in the completion task to address the issues of lack of interpretability in the one-shot scenario. In addition, to improve completion and reasoning quality in sparse knowledge graphs, MHEC utilizes contrastive learning to enhance pre-training vector representations of entities and relations and proposes a matching processor that leverages the semantic information of pre-training vectors to assist the reasoning model in expanding the multi-hop paths. Experiments demonstrate that MHEC outperforms the state-of-the-art completion techniques on real-world datasets NELL-One and FB15k237-One. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 37 条
  • [21] Reinforcement learning with dynamic completion for answering multi-hop questions over incomplete knowledge graph
    Cui, Hai
    Peng, Tao
    Han, Ridong
    Zhu, Beibei
    Bi, Haijia
    Liu, Lu
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [22] Relational multi-scale metric learning for few-shot knowledge graph completion
    Song, Yu
    Gui, Mingyu
    Zhang, Kunli
    Xu, Zexi
    Dai, Dongming
    Kong, Dezhi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (07) : 4125 - 4150
  • [23] Adapting Meta Knowledge Graph Information for Multi-Hop Reasoning over Few-Shot Relations
    Lv, Xin
    Gu, Yuxian
    Han, Xu
    Hou, Lei
    Li, Juanzi
    Liu, Zhiyuan
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 3376 - 3381
  • [24] Multi-hop Knowledge Graph Reasoning Based on Hyperbolic Knowledge Graph Embedding and Reinforcement Learning
    Zhou, Xingchen
    Wang, Peng
    Luo, Qiqing
    Pan, Zhe
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021), 2021, : 1 - 9
  • [25] Mineral question-answering system in Chinese based on multi-hop reasoning in knowledge graphs
    Ji, Xiaohui
    Dong, Yuhang
    Yang, Zhongji
    Yang, Mei
    He, Mingyue
    Wang, Yuzhu
    Earth Science Frontiers, 2024, 31 (04) : 37 - 46
  • [26] A Knowledge-Enhanced Dialogue Model Based on Multi-Hop Information with Graph Attention
    Bi, Zhongqin
    Wang, Shiyang
    Chen, Yan
    Li, Yongbin
    Kim, Jung Yoon
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02): : 403 - 426
  • [27] Incorporating multi-perspective information into reinforcement learning to address multi-hop knowledge graph question answering
    Gong, Chuanyang
    Wei, Zhihua
    Wang, Rui
    Zhu, Ping
    Chen, Jing
    Zhang, Hongyun
    Miao, Duoqian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [28] FSTrack: One-Shot Multi-Object Tracking Algorithm Based on Feature Enhancement and Similarity Estimation
    He, Botong
    Yuan, Liang
    Lv, Kai
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 775 - 779
  • [29] Energy Efficient Topology Control in Multi-hop Wireless Networks based on One-hop and Two-hop Neighbor Information
    Maw, Min Min Thet
    Kunavut, Kunagorn
    2016 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2016, : 223 - 227
  • [30] RLAT: Multi-hop temporal knowledge graph reasoning based on Reinforcement Learning and Attention Mechanism
    Bai, Luyi
    Chai, Die
    Zhu, Lin
    KNOWLEDGE-BASED SYSTEMS, 2023, 269