Direct observation of ion cyclotron damping of turbulence in Earth's magnetosheath plasma

被引:0
|
作者
Afshari, A. S. [1 ]
Howes, G. G. [1 ]
Shuster, J. R. [2 ,3 ]
Klein, K. G. [4 ]
McGinnis, D. [1 ]
Martinovic, M. M. [4 ]
Boardsen, S. A. [5 ,6 ]
Brown, C. R. [1 ]
Huang, R. [1 ]
Hartley, D. P. [1 ]
Kletzing, C. A. [1 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[2] Inst Study Earth Oceans & Space, Space Sci Ctr, Durham, NH 03824 USA
[3] Univ New Hampshire, Durham, NH 03824 USA
[4] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA
[5] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[6] Univ Maryland, Goddard Planetary Heliophys Inst, Baltimore, MD USA
关键词
D O I
10.1038/s41467-024-52125-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasma turbulence plays a key role in space and astrophysical plasma systems, enabling the energy of magnetic fields and plasma flows to be transported to particle kinetic scales at which the turbulence dissipates and heats the plasma. Identifying the physical mechanisms responsible for the dissipation of the turbulent energy is a critical step in developing the predictive capability for the turbulent heating needed by global models. In this work, spacecraft measurements of the electromagnetic fields and ion velocity distributions by the Magnetospheric Multiscale (MMS) mission are used to generate velocity-space signatures that identify ion cyclotron damping in Earth's turbulent magnetosheath, in agreement with analytical modeling. Furthermore, the rate of ion energization is directly quantified and combined with a previous analysis of the electron energization to identify the dominant channels of turbulent dissipation and determine the partitioning of energy among species in this interval. Most space plasmas are in turbulent state and turbulence plays an essential role in transferring energy from large to small scales. Here, the authors show direct measurements of ion cyclotron damping in the Earth's turbulent magnetosheath plasma and the resulting ion and electron energization rates.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Universal properties of mirror mode turbulence in the Earth's magnetosheath
    Osmane, A.
    Dimmock, A. P.
    Pulkkinen, T. I.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (09) : 3085 - 3092
  • [22] Statistical analysis of turbulence in the foreshock region and in the Earth's magnetosheath
    Kozak, L. V.
    Pilipenko, V. A.
    Chugunova, O. M.
    Kozak, P. N.
    COSMIC RESEARCH, 2011, 49 (03) : 194 - 204
  • [23] Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath
    L. V. Kozak
    V. A. Pilipenko
    O. M. Chugunova
    P. N. Kozak
    Cosmic Research, 2011, 49 : 194 - 204
  • [24] Rotation of the magnetic field in Earth's magnetosheath by bulk magnetosheath plasma flow
    Longmore, M
    Schwartz, SJ
    Lucek, EA
    ANNALES GEOPHYSICAE, 2006, 24 (01) : 339 - 354
  • [25] OBSERVATION OF ION CYCLOTRON WAVES IN A HOT PLASMA
    UMAN, MF
    HOOKE, WM
    PHYSICS OF FLUIDS, 1969, 12 (5P1) : 1072 - &
  • [27] DAMPING OF TRANSVERSE PLASMA OSCILLATIONS AT ION CYCLOTRON RESONANCE
    MAY, RM
    TENDYS, J
    JOURNAL OF NUCLEAR ENERGY PART C-PLASMA PHYSICS ACCELERATORS THERMONUCLEAR RESEARCH, 1965, 7 (1PC): : 37 - &
  • [28] Direct Observations of Reconnection Fronts in Earth's Turbulent Magnetosheath
    Liu, C. M.
    Xing, X. N.
    Cao, J. B.
    ASTROPHYSICAL JOURNAL, 2023, 956 (01):
  • [29] In Situ Observation of Intermittent Dissipation at Kinetic Scales in the Earth's Magnetosheath
    Chasapis, Alexandros
    Matthaeus, W. H.
    Parashar, T. N.
    Wan, M.
    Haggerty, C. C.
    Pollock, C. J.
    Giles, B. L.
    Paterson, W. R.
    Dorelli, J.
    Gershman, D. J.
    Torbert, R. B.
    Russell, C. T.
    Lindqvist, P. -A.
    Khotyaintsev, Y.
    Moore, T. E.
    Ergun, R. E.
    Burch, J. L.
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 856 (01)
  • [30] Ion distributions associated with mirror waves in the Earth's magnetosheath
    Leckband, JA
    Burgess, D
    Pantellini, FGE
    Schwartz, SJ
    PHYSICS OF COLLISIONLESS SHOCKS, 1995, 15 (8-9): : 345 - 348