An effective feature selection approach based on hybrid Grey Wolf Optimizer and Genetic Algorithm for hyperspectral image

被引:0
|
作者
Shang, Yiqun [1 ,2 ]
Zheng, Minrui [3 ]
Li, Jiayang [4 ]
Zheng, Xinqi [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, Ningbo 315100, Peoples R China
[3] Renmin Univ China, Sch Publ Adm & Policy, Beijing 100872, Peoples R China
[4] Chengdu Inst Survey & Invest, Chengdu 610023, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
PARTICLE SWARM OPTIMIZATION; BAND SELECTION; MUTUAL INFORMATION; CLASSIFICATION; SUBSET; PSO;
D O I
10.1038/s41598-024-84934-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Feature selection (FS) is a critical step in hyperspectral image (HSI) classification, essential for reducing data dimensionality while preserving classification accuracy. However, FS for HSIs remains an NP-hard challenge, as existing swarm intelligence and evolutionary algorithms (SIEAs) often suffer from limited exploration capabilities or susceptibility to local optima, particularly in high-dimensional scenarios. To address these challenges, we propose GWOGA, a novel hybrid algorithm that combines Grey Wolf Optimizer (GWO) and Genetic Algorithm (GA), aiming to achieve an effective balance between exploration and exploitation. The innovation of GWOGA lies in three core strategies: (1) chaotic map and Opposition-Based Learning (OBL) for uniformly distributed population initialization, enhancing diversity and mitigating premature convergence; (2) elite learning strategy to prioritize high-ranking solutions, strengthening the search hierarchy and efficiency; and (3) a hybrid optimization mechanism where GWO ensures rapid early-stage convergence, while GA refines global search in later stages to escape local optima. Experiments on three benchmark HSIs (i.e., Indian Pines, KSC, and Botswana) demonstrate that GWOGA outperforms state-of-the-art algorithms, achieving higher classification accuracy with fewer selected bands. The results highlight GWOGA's robustness, generalizability, and potential for real-world applications in HSI FS.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] MODIFIED HYBRID GREY WOLF OPTIMIZER AND GENETIC ALGORITHM (HmGWOGA) FOR GLOBAL OPTIMIZATION OF POSITIVE FUNCTIONS
    Sawadogo, W. O.
    Ouedraogo, P. O. F.
    Some, K.
    Alaa, N.
    Some, B.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2019, 20 (02): : 187 - 206
  • [42] Threshold Binary Grey Wolf Optimizer Based on Multi-Elite Interaction for Feature Selection
    Wu, Hongzhuo
    Du, Shiyu
    Zhang, Yiming
    Zhang, Quan
    Duan, Kai
    Lin, Yanru
    IEEE ACCESS, 2023, 11 : 34332 - 34348
  • [43] A hybrid bat and grey wolf optimizer for gene selection in cancer classification
    Tbaishat, Dina
    Tubishat, Mohammad
    Makhadmeh, Sharif Naser
    Alomari, Osama Ahmad
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (01) : 455 - 495
  • [44] A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning
    Yu, Xiaobing
    Jiang, Nijun
    Wang, Xuming
    Li, Mingyuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215
  • [45] A hybrid learning-based genetic and grey-wolf optimizer for global optimization
    Ankush Jain
    Surendra Nagar
    Pramod Kumar Singh
    Joydip Dhar
    Soft Computing, 2023, 27 : 4713 - 4759
  • [46] A Novel Hybrid Method of Global Optimization Based on the Grey Wolf Optimizer and the Bees Algorithm
    Konstantinov, S. V.
    Khamidova, U. K.
    Sofronova, E. A.
    PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS 2018 (INTELS'18), 2019, 150 : 471 - 477
  • [47] Feature Selection of Grey Wolf Optimizer Based on Quantum Computing and Uncertain Symmetry Rough Set
    Zhao, Guobao
    Wang, Haiying
    Jia, Deli
    Wang, Quanbin
    SYMMETRY-BASEL, 2019, 11 (12):
  • [48] A hybrid learning-based genetic and grey-wolf optimizer for global optimization
    Jain, Ankush
    Nagar, Surendra
    Singh, Pramod Kumar
    Dhar, Joydip
    SOFT COMPUTING, 2023, 27 (08) : 4713 - 4759
  • [49] Using a Genetic Algorithm with Histogram-Based Feature Selection in Hyperspectral Image Classification
    Walton, Neil S.
    Sheppard, John W.
    Shaw, Joseph A.
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1364 - 1372
  • [50] Binary grey wolf optimizer with a novel population adaptation strategy for feature selection
    Wang, Dazhi
    Ji, Yanjing
    Wang, Hongfeng
    Huang, Min
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (17): : 2313 - 2331