Vanadium phosphorus oxide (VPO) catalysts play a crucial role in the selective oxidation of n-butane to maleic anhydride (MA), and their catalytic performance is highly dependent on the synthesis conditions of the precursor. This study focuses on a facile and rapid microwave irradiation method for the synthesis of VPO precursors. The effects of microwave exposure time and power on morphology, crystalline structure, and catalytic effect of VPO are investigated. The relationship between the structure and performance of the catalysts is explored by SEM, TEM, BET, FT-IR, XRD, Raman, and XPS characterization. The results demonstrate that microwave power is the key factor influencing the size, thickness, surface area, and active surfaces of vanadium pyrophosphate after activation. Additionally, the P/V ratio and Lat-O/ Sur-O ratio on the catalyst surface vary with different synthesis conditions, which significantly affect the catalytic performance. In conclusion, the microwave-synthesized VPO catalyst exhibits remarkable enhancements in n-butane conversion (87.2%) and maleic anhydride (MA) selectivity (70.2%), which shows high efficiency and energy-saving, providing a new research direction for the future preparation of VPO catalysts. (c) 2024 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.