The Cohomology of Projective Unitary Groups

被引:0
|
作者
Duan, Haibao [1 ,2 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Lie groups; cohomology; Serre spectral sequence; Gysin sequence; SCHUBERT CALCULUS; RING;
D O I
10.1134/S0081543824040084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The projective unitary group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PU}(n)$$\end{document} is the quotient of the unitary group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{U}(n)$$\end{document} by its center \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>1=\{e<^>{i\theta}I_n \colon\, \theta\in [0,2\pi]\}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_n$$\end{document} is the identity matrix. Combining the Serre spectral sequence of the fibration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PU}(n)\to \mathrm{PU}(n)/T$$\end{document} with the Gysin sequence of the circle bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{U}(n)\to \mathrm{PU}(n)$$\end{document}, we compute the integral cohomology ring of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PU}(n)$$\end{document} using explicitly constructed generators, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} is a maximal torus of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PU}(n)$$\end{document}.
引用
收藏
页码:157 / 176
页数:20
相关论文
共 50 条