Isolation and characterization of mung bean (Vigna radiata L.) rhizobia in Myanmar

被引:0
|
作者
Htwe, Aung Zaw [1 ,2 ]
Yamakawa, Takeo [3 ]
Ishibashi, Matsujiro [1 ,4 ]
Tsurumaru, Hirohito [1 ,4 ]
机构
[1] Kagoshima Univ, Fac Agr, Appl Microbiol Lab, 1-21-24 Korimoto, Kagoshima 8900065, Japan
[2] Yezin Agr Univ, Dept Agron, Nay Pyi Taw, Myanmar
[3] Setsunan Univ, Fac Agr, Dept Agr Sci & Technol, Lab Prod Ecol, Osaka, Japan
[4] Kagoshima Univ, United Grad Sch Agr Sci, Kagoshima, Japan
关键词
Bradyrhizobium; 16S rRNA gene; ITS; Nodulation; Mung bean; PHYLOGENETIC DIVERSITY; NITROGEN-FIXATION; STRAINS; REGIONS;
D O I
10.1007/s13199-024-01013-2
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We collected soil samples from six major mung bean cropping regions in Myanmar: Sagaing, Mandalay, Nay Pyi Taw, and Magway in the tropical savanna climate zone and Bago and Yangon in the tropical monsoon climate zone. All fields grew mung bean for at least 5 years and had no history of rhizobial inoculation. Mung bean 'Yezin-11', a popular cultivar in Myanmar, was inoculated with soil suspensions. From the nodules formed on the roots, we isolated 55 rhizobial strains. Identification of the isolates revealed the dominant species of indigenous rhizobia in each region. We identified 53 Bradyrhizobium strains and 2 Ensifer strains. Bradyrhizobium yuanmingense was dominant in the tropical savanna zone and Bradyrhizobium sp. (B. liaoningense or B. diversitatis) and B. centrosematis were dominant in the tropical monsoon zone. Principal component analysis indicates that the dominance of B. yuanmingense in the tropical savanna zone might be due to high concentration of NO3-N and P2O5 in the soil. It also indicates that the dominance of B. centrosematis in the tropical monsoon zone might be caused by drastically low pH and high concentration of NH4 in the soil. Bradyrhizobium centrosematis YGN-M9, B. yuanmingense SGG-M3, and Bradyrhizobium sp. BGO-M5 significantly increased nodulation (nodule number and nodule dry weight), acetylene reduction activity, and shoot dry weight, respectively, relative to Ensifer terangae MDY-M6. Co-inoculation with these three strains increased nodulation significantly compared with single inoculation of BGO-M5. The characterization of mung bean rhizobia and selection of microbial inoculant candidates will be useful for the development of microbial inoculants in Myanmar.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 50 条
  • [41] INDUCED VARIATION IN MUNG BEAN (VIGNA-RADIATA (L) WILCZEK)
    SHAKOOR, A
    AHSANULHAQ, M
    SADIQ, M
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 1978, 18 (03) : 169 - 175
  • [42] PURIFICATION AND CHARACTERIZATION OF TUBULIN FROM MUNG BEAN (VIGNA-RADIATA)
    SEN, K
    RAHA, D
    DAS, T
    BISWAS, BB
    JOURNAL OF BIOSCIENCES, 1987, 12 (04) : 375 - 381
  • [43] Isolation and characterization of Ty1/copia-like retrotransposons in mung bean (Vigna radiata)
    Xiao, Weimin
    Su, Yuhui
    Sakamoto, Wataru
    Sodmergen
    JOURNAL OF PLANT RESEARCH, 2007, 120 (02) : 323 - 328
  • [44] COMBINED EFFECTS OF PLANT GROWTH PROMOTING RHIZOBACTERIA AND FUNGI ON MUNG BEAN (VIGNA RADIATA L.)
    Gangwar, Ravi Kumar
    Bhushan, Gaurav
    Singh, Jaspal
    Upadhyay, Sudhir K.
    Singh, A. P.
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2013, 4 (11): : 4422 - 4426
  • [45] Polyamines protect mung bean [Vigna radiata (L.) Wilczek] plants against drought stress
    Omid Sadeghipour
    Biologia Futura, 2019, 70 : 71 - 78
  • [46] Productivity and antioxidant activity of mung bean sprouts (Vigna radiata L.) mediated by some elicitors
    Duarte, Marcelo
    da Silva, Veronica Leticia
    Pacheco, Ana Claudia
    Machado Neto, Nelson Barbosa
    Custodio, Ceci Castilho
    CIENCIA RURAL, 2023, 53 (02):
  • [47] Chromium Stress Induced Alterations in Leaf Physiology and Morphology in Mung Bean (Vigna radiata L.)
    Mishra, Gayatri
    Yadav, Navneet
    Manasa, Lekshmi S.
    Biswal, Durga Prasad
    Rout, Gyana Ranjan
    Panigrahi, Kishore Chandra
    JOURNAL OF CROP HEALTH, 2024, : 1735 - 1744
  • [48] COMPARATIVE EFFICACY OF ZINC SOURCES FOR ZINC-BIOFORTIFICATION OF MUNG BEAN (Vigna radiata L.)
    Aslaml, Zubair
    Bashir, Safdar
    Shahzad, Muhammad
    Ahmad, Jam Nazeer
    Bashir, Saqib
    Ahmad, Ali
    Ahmad, Niaz
    Tillah, Rehmat
    Husain, Arif
    Alotaibi, Sager S.
    El-Shehawi, Ahmed M.
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (08): : 9903 - 9912
  • [49] Effect of oxidation and esterification on functional properties of mung bean (Vigna radiata (L.) Wilczek) starch
    Maisa Bushra
    Xu Xiao Yun
    Si Yi Pan
    Arine Hydamaka
    Miao Wen hua
    Wang Lu Feng
    European Food Research and Technology, 2013, 236 : 119 - 128
  • [50] Genetic and phenotypic diversity of selected Kenyan mung bean (Vigna radiata L. Wilckzek) genotypes
    Mwangi, Jedidah Wangari
    Okoth, Oduor Richard
    Kariuki, Muchemi Peterson
    Piero, Ngugi Mathew
    JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY, 2021, 19 (01)