Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries

被引:2
|
作者
Yao, Adrian [1 ,2 ]
Benson, Sally M. [3 ]
Chueh, William C. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Appl Energy Div, Menlo Pk, CA 94025 USA
[3] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA 94305 USA
来源
NATURE ENERGY | 2025年
基金
美国国家科学基金会;
关键词
NA-ION; ELECTRICITY; COSTS;
D O I
10.1038/s41560-024-01701-9
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sodium-ion batteries have garnered notable attention as a potentially low-cost alternative to lithium-ion batteries, which have experienced supply shortages and price volatility for key minerals. Here we assess their techno-economic competitiveness against incumbent lithium-ion batteries using a modelling framework incorporating componential learning curves constrained by minerals prices and engineering design floors. We compare projected sodium-ion and lithium-ion price trends across over 6,000 scenarios while varying Na-ion technology development roadmaps, supply chain scenarios, market penetration and learning rates. Assuming that substantial progress can be made along technology roadmaps via targeted research and development, we identify several sodium-ion pathways that might reach cost-competitiveness with low-cost lithium-ion variants in the 2030s. In addition, we show that timelines are highly sensitive to movements in critical minerals supply chains-namely that of lithium, graphite and nickel. Our modelled outcomes suggest that being price advantageous against low-cost lithium-ion variants in the near term is challenging and increasing sodium-ion energy densities to decrease materials intensity is among the most impactful ways to improve competitiveness.
引用
收藏
页码:404 / 416
页数:13
相关论文
共 50 条
  • [21] Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning
    Li, Weihan
    Zeng, Linchao
    Wu, Ying
    Yu, Yan
    SCIENCE CHINA-MATERIALS, 2016, 59 (04) : 287 - 321
  • [22] Intelligent Monitoring for Safety-Enhanced Lithium-Ion/Sodium-Ion Batteries
    Guo, Xiaoniu
    Guo, Shuai
    Wu, Chuanwei
    Li, Junyu
    Liu, Chuntai
    Chen, Weihua
    ADVANCED ENERGY MATERIALS, 2023, 13 (10)
  • [23] A ZnGeP2/C anode for lithium-ion and sodium-ion batteries
    Zhang, Miao
    Hu, Renzong
    Liu, Jiangwen
    Ouyang, Liuzhang
    Liu, Jun
    Yang, Lichun
    Zhu, Min
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 77 : 85 - 88
  • [24] From lithium-ion to sodium-ion battery
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN CHEMICAL BULLETIN, 2017, 66 (08) : 1329 - 1335
  • [25] From lithium-ion to sodium-ion battery
    T. L. Kulova
    A. M. Skundin
    Russian Chemical Bulletin, 2017, 66 : 1329 - 1335
  • [26] Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
    Kim, Sung-Wook
    Seo, Dong-Hwa
    Ma, Xiaohua
    Ceder, Gerbrand
    Kang, Kisuk
    ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 710 - 721
  • [27] Applications of Tin Sulfide-Based Materials in Lithium-Ion Batteries and Sodium-Ion Batteries
    Shan, Yuying
    Li, Yan
    Pang, Huan
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (23)
  • [28] High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective
    Zhang, Lupeng
    Li, Xinle
    Yang, Mingrui
    Chen, Weihua
    ENERGY STORAGE MATERIALS, 2021, 41 (41) : 522 - 545
  • [29] A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors
    Yi, Ting-Feng
    Sari, Hirbod Maleki Kheimeh
    Li, Xuezhong
    Wang, Fanfan
    Zhu, Yan-Rong
    Hu, Junhua
    Zhang, Jiujun
    Li, Xifei
    NANO ENERGY, 2021, 85
  • [30] From spent lithium-ion batteries to high performance sodium-ion batteries: a case study
    Lei, Yu
    Zhang, Jiakui
    Chen, Xianghong
    Min, Wenlu
    Wang, Rui
    Yan, Ming
    Xu, Jiantie
    MATERIALS TODAY ENERGY, 2022, 26