Failure Analysis of 316 Stainless Steel Corrosion Fatigue Test Fixture

被引:0
|
作者
Zhou, Long [1 ,2 ]
Zhang, Ziyu [2 ]
Tan, Jibo [2 ]
Wu, Xinqiang [2 ]
Wang, Xiang [2 ]
机构
[1] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, CAS Key Lab Nucl Mat & Safety Assessment, Liaoning Key Lab Safety & Assessment Tech Nucl Mat, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Stainless steel; High-temperature pressured water; Corrosion fatigue; Finite element; LOW-CYCLE FATIGUE; PERSISTENT SLIP BANDS; CRACK INITIATION; NONMETALLIC INCLUSIONS; ALLOY; 690; HYDROGEN; BEHAVIOR; WATER; MECHANISM; DEPENDENCE;
D O I
10.1007/s11668-025-02115-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The corrosion fatigue failure behavior of 316 stainless steel fixture used in high-temperature pressurized water environment was analyzed. The corrosion products, fracture morphology and stress distribution were performed using body microscope, scanning electron microscope, electron backscatter diffraction and finite element analysis. It was found that the stress concentration at the right-angle transition position of the fixture was obvious which promoted the corrosion damage during fatigue test in high-temperature pressurized water. Inclusions were also observed at the crack initiation positions and the propagation areas. The interaction between mechanical damage and environmental damage during fixture service was discussed, and a rounded corner transition was proposed and analyzed for retarding stress concentration at transition position of the fatigue fixture. Slip bands promote crack growth, and the direction of crack may propagate along these slip bands at the crack tip.
引用
收藏
页码:536 / 545
页数:10
相关论文
共 50 条
  • [41] Corrosion Fatigue Characteristics of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Gnanasekaran, Balachander
    Song, Jie
    Vasudevan, Vijay
    Fu, Yao
    METALS, 2021, 11 (07)
  • [43] Failure analysis in 316L stainless steel supracondylar blade plate
    Guerra-Fuentes, L.
    Garcia-Sanchez, E.
    Juarez-Hernandez, A.
    Hernandez-Rodriguez, M. A. L.
    ENGINEERING FAILURE ANALYSIS, 2015, 57 : 243 - 247
  • [44] Failure analysis of explanted 316L stainless steel sternal wires
    Shih, Chung-Ming
    Lin, Shing-Jong
    Shih, Chun-Che
    Su, Yea-Yang
    Wire Journal International, 2006, 39 (02): : 110 - 116
  • [45] Creep and Creep-fatigue Behaviour of 316 Stainless Steel
    Holmstrom, Stefan
    Pohja, Rami
    Nurmela, Asta
    Moilanen, Pekka
    Auerkari, Pertti
    6TH INTERNATIONAL CONFERENCE ON CREEP, FATIGUE AND CREEP-FATIGUE INTERACTION, 2013, 55 : 160 - 164
  • [46] Fatigue crack growth in 316L stainless steel
    Wheatley, G
    Niefanger, R
    Estrin, Y
    Hu, XZ
    FRACTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2: PT 1: FRACTURE MECHANICS OF MATERIALS; PT 2: BEHAVIOR OF MATERIALS AND STRUCTURE, 1998, 145-9 : 631 - 636
  • [47] The effect of mercury on the fatigue behavior of 316 LN stainless steel
    Strizak, JP
    DiStefano, JR
    Liaw, PK
    Tian, H
    JOURNAL OF NUCLEAR MATERIALS, 2001, 296 : 225 - 230
  • [48] FATIGUE CRACK INITIATION MODEL OF TYPE 316 STAINLESS STEEL
    Ishizawa, Terushi
    Nakamura, Takao
    Kitada, Takanori
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2016, VOL 5, 2017,
  • [49] The Unified Creep-Fatigue Equation for Stainless Steel 316
    Liu, Dan
    Pons, Dirk John
    Wong, Ee-hua
    METALS, 2016, 6 (09)
  • [50] Corrosion of annealed AISI 316 stainless steel in sodium environment
    Ganesan, V
    Ganesan, V
    JOURNAL OF NUCLEAR MATERIALS, 1998, 256 (01) : 69 - 77