Retinal fundus image super-resolution based on generative adversarial network guided with vascular structure prior

被引:0
|
作者
Yanfei Jia [1 ]
Guangda Chen [1 ]
Haotian Chi [2 ]
机构
[1] Beihua University,School of Electrical and Information Engineering
[2] Jilin University,College of electronic science and engineering
关键词
D O I
10.1038/s41598-024-74186-x
中图分类号
学科分类号
摘要
Many ophthalmic and systemic diseases can be screened by analyzing retinal fundus images. The clarity and resolution of retinal fundus images directly determine the effectiveness of clinical diagnosis. Deep learning methods based on generative adversarial networks are used in various research fields due to their powerful generative capabilities, especially image super-resolution. Although Real-ESRGAN is a recently proposed method that excels in processing real-world degraded images, it suffers from structural distortions when super-resolving retinal fundus images are rich in structural information. To address this shortcoming, we first process the input image using a pre-trained U-Net model to obtain a structural segmentation map of the retinal vessels and use the segmentation map as the structural prior. The spatial feature transform layer is then used to better integrate the structural prior into the generation process of the generator. In addition, we introduce channel and spatial attention modules into the skip connections of the discriminator to emphasize meaningful features and accordingly enhance the discriminative power of the discriminator. Based on the original loss functions, we introduce the L1 loss function to measure the pixel-level differences between the segmentation maps of retinal vascular structures in the high-resolution images and the super-resolution images to further constrain the super-resolution images. Simulation results on retinal image datasets show that our improved algorithm results have a better visual performance by suppressing structural distortions in the super-resolution images.
引用
收藏
相关论文
共 50 条
  • [21] Super-Resolution Reconstruction of Underwater Image Based on Image Sequence Generative Adversarial Network
    Li, Li
    Fan, Zijia
    Zhao, Mingyang
    Wang, Xinlei
    Wang, Zhongyang
    Wang, Zhiqiong
    Guo, Longxiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [22] Optimization of generative adversarial network based image super-resolution by using image mask
    Jiang, Qilei
    Ma, Yuanxi
    He Jishu/Nuclear Techniques, 2023, 46 (05): : 93 - 101
  • [23] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)
  • [24] Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network
    Zha Tibo
    Luo Lin
    Yang Kai
    Zhang Yu
    Li Jinlong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (08)
  • [25] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [26] Generative Adversarial Network for Image Super-Resolution Combining Texture Loss
    Jiang, Yuning
    Li, Jinhua
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [27] Dual Discriminator Generative Adversarial Network for Single Image Super-Resolution
    Liu, Peng
    Hong, Ying
    Liu, Yan
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 680 - 687
  • [28] CSRGAN: MEDICAL IMAGE SUPER-RESOLUTION USING A GENERATIVE ADVERSARIAL NETWORK
    Zhu, Yongpei
    Zhou, Zicong
    Liao, Guojun
    Yuan, Kehong
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING WORKSHOPS (IEEE ISBI WORKSHOPS 2020), 2020,
  • [29] Generative adversarial network in wavelet domain for single image super-resolution
    Zhang, Fan
    Wang, Xinwei
    Cao, Lin
    Du, Kangning
    Guo, Yanan
    Journal of Computers (Taiwan), 2021, 32 (03) : 249 - 262
  • [30] Super-resolution SAR Image Reconstruction via Generative Adversarial Network
    Wang, Longgang
    Zheng, Mana
    Du, Wenbo
    Wei, Menglin
    Li, Lianlin
    2018 12TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND ELECTROMAGNETIC THEORY (ISAPE), 2018,