Retinal fundus image super-resolution based on generative adversarial network guided with vascular structure prior

被引:0
|
作者
Yanfei Jia [1 ]
Guangda Chen [1 ]
Haotian Chi [2 ]
机构
[1] Beihua University,School of Electrical and Information Engineering
[2] Jilin University,College of electronic science and engineering
关键词
D O I
10.1038/s41598-024-74186-x
中图分类号
学科分类号
摘要
Many ophthalmic and systemic diseases can be screened by analyzing retinal fundus images. The clarity and resolution of retinal fundus images directly determine the effectiveness of clinical diagnosis. Deep learning methods based on generative adversarial networks are used in various research fields due to their powerful generative capabilities, especially image super-resolution. Although Real-ESRGAN is a recently proposed method that excels in processing real-world degraded images, it suffers from structural distortions when super-resolving retinal fundus images are rich in structural information. To address this shortcoming, we first process the input image using a pre-trained U-Net model to obtain a structural segmentation map of the retinal vessels and use the segmentation map as the structural prior. The spatial feature transform layer is then used to better integrate the structural prior into the generation process of the generator. In addition, we introduce channel and spatial attention modules into the skip connections of the discriminator to emphasize meaningful features and accordingly enhance the discriminative power of the discriminator. Based on the original loss functions, we introduce the L1 loss function to measure the pixel-level differences between the segmentation maps of retinal vascular structures in the high-resolution images and the super-resolution images to further constrain the super-resolution images. Simulation results on retinal image datasets show that our improved algorithm results have a better visual performance by suppressing structural distortions in the super-resolution images.
引用
收藏
相关论文
共 50 条
  • [1] Perception-oriented generative adversarial network for retinal fundus image super-resolution
    Zhao, Liquan
    Chi, Haotian
    Zhong, Tie
    Jia, Yanfei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 168
  • [2] Improved generative adversarial network for retinal image super-resolution
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
  • [3] Component Semantic Prior Guided Generative Adversarial Network for Face Super-Resolution
    Liu, Lu
    Wang, Shenghui
    Wan, Lili
    IEEE ACCESS, 2019, 7 : 77027 - 77036
  • [4] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [5] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [6] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [7] Image Super-resolution Reconstructing based on Generative Adversarial Network
    Nan Jing
    Bo Lei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342
  • [8] Mars Image Super-Resolution Based on Generative Adversarial Network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    IEEE ACCESS, 2021, 9 : 108889 - 108898
  • [9] Semantic Prior Based Generative Adversarial Network for Video Super-Resolution
    Wu, Xinyi
    Lucas, Alice
    Lopez-Tapia, Santiago
    Wang, Xijun
    Kim, Yul Hee
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [10] Image super-resolution reconstruction based on improved generative adversarial network
    Wang Y.-L.
    Li X.-J.
    Ma H.-B.
    Ding Q.
    Pirouz M.
    Ma Q.-T.
    Journal of Network Intelligence, 2021, 6 (02): : 155 - 163