Optoelectronic array of photodiodes integrated with RRAMs for energy-efficient in-sensor computing

被引:0
|
作者
Wen Pan [1 ]
Lai Wang [1 ]
Jianshi Tang [2 ]
Heyi Huang [2 ]
Zhibiao Hao [3 ]
Changzheng Sun [3 ]
Bing Xiong [1 ]
Jian Wang [2 ]
Yanjun Han [1 ]
Hongtao Li [2 ]
Lin Gan [1 ]
Yi Luo [2 ]
机构
[1] Tsinghua University,Department of Electronic Engineering
[2] Tsinghua University,Beijing National Research Center for Information Science and Technology (BNRist)
[3] Tsinghua University,School of Integrated Circuits
关键词
D O I
10.1038/s41377-025-01743-y
中图分类号
学科分类号
摘要
The rapid development of internet of things (IoT) urgently needs edge miniaturized computing devices with high efficiency and low-power consumption. In-sensor computing has emerged as a promising technology to enable in-situ data processing within the sensor array. Here, we report an optoelectronic array for in-sensor computing by integrating photodiodes (PDs) with resistive random-access memories (RRAMs). The PD-RRAM unit cell exhibits reconfigurable optoelectronic output and photo-responsivity by programming RRAMs into different resistance states. Furthermore, a 3 × 3 PD-RRAM array is fabricated to demonstrate optical image recognition, achieving a universal architecture with ultralow latency and low power consumption. This study highlights the great potential of the PD-RRAM optoelectronic array as an energy-efficient in-sensor computing primitive for future IoT applications.
引用
收藏
相关论文
共 50 条
  • [41] Survey of Energy-Efficient Techniques for the Cloud-Integrated Sensor Network
    Das, Kalyan
    Das, Satyabrata
    Darji, Rabi Kumar
    Mishra, Ananya
    JOURNAL OF SENSORS, 2018, 2018
  • [42] Energy-efficient hierarchical routing in wireless sensor networks based on fog computing
    Abidoye, Ademola Philip
    Kabaso, Boniface
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2021, 2021 (01)
  • [43] Energy-efficient hierarchical routing in wireless sensor networks based on fog computing
    Ademola Philip Abidoye
    Boniface Kabaso
    EURASIP Journal on Wireless Communications and Networking, 2021
  • [44] Backpropagation for Energy-Efficient Neuromorphic Computing
    Esser, Steve K.
    Appuswamy, Rathinakumar
    Merolla, Paul A.
    Arthur, John V.
    Modha, Dharmendra S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [45] Energy-Efficient Computing in Nanoscale CMOS
    De, Vivek
    IEEE DESIGN & TEST, 2016, 33 (02) : 68 - 75
  • [46] Energy-efficient computing with approximate multipliers
    Pilipović, Ratko
    Bulić, Patricio
    Lotrič, Uroš
    Elektrotehniski Vestnik/Electrotechnical Review, 2022, 89 (03): : 117 - 123
  • [47] Energy-efficient computing for a group of clusters
    Grushin, D. A.
    Kuzyurin, N. N.
    PROGRAMMING AND COMPUTER SOFTWARE, 2013, 39 (06) : 295 - 300
  • [48] Quantum Materials for Energy-Efficient Computing
    Chowdhury, Sugata
    Zhuang, Houlong
    Coleman, Shawn
    Patala, Srikanth
    Bair, Jacob
    JOM, 2020, 72 (09) : 3147 - 3148
  • [49] Energy-efficient computing at cryogenic temperatures
    Zota, Cezar
    Ferraris, Alberto
    Cha, Eunjung
    Prathapan, Mridula
    Mueller, Peter
    Leobandung, Effendi
    Nature Electronics, 2024, 7 (11) : 966 - 974
  • [50] Quantum Materials for Energy-Efficient Computing
    Sugata Chowdhury
    Houlong Zhuang
    Shawn Coleman
    Srikanth Patala
    Jacob Bair
    JOM, 2020, 72 : 3147 - 3148