XGBoost Predictions of Heat Generation in MHD Natural Convection of Hybrid Nanofluid in a Wavy Porous Cavity

被引:0
|
作者
Noura Alsedais [1 ]
Mohamed Ahmed Mansour [2 ]
Abdelraheem M. Aly [3 ]
机构
[1] Princess Nourah Bint Abdulrahman University,Department of Mathematical Sciences, College of Science
[2] Assiut University,Mathematics Department, Faculty of Science
[3] King Khalid University,Department of Mathematics, College of Science
关键词
Magnetohydrodynamic; Hybrid nanofluid; Local thermal non-equilibrium (LTNE); Wavy porous cavity; Heat generation effects;
D O I
10.1007/s13538-025-01747-4
中图分类号
学科分类号
摘要
This study investigates the effects of heat generation and magnetic fields on natural convection in a wavy porous cavity filled with a hybrid nanofluid (Al₂O₃-Cu/water), using the hybrid finite volume method (FVM) and XGBoost model within the local thermal non-equilibrium (LTNE) framework. The cavity contains inner heaters with variable lengths, positions, and heat generation/absorption coefficients. The primary objective is to analyze the interplay of key parameters, including heat source length (B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}), position (D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}), solid volume fraction (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}), porosity (ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}), Hartmann number (Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}), Rayleigh number (Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ra$$\end{document}), and the heat generation/absorption coefficient (Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}). The results provide insights into optimizing heat and mass transfer characteristics under varying conditions, with potential applications in thermal management systems. The mathematical model incorporates the governing equations for continuity, momentum, and energy for the fluid and solid phases. The LTNE approach accounts for separate temperature fields for the fluid and solid, enabling a detailed analysis of the thermal behavior. The numerical simulations were performed using dimensionless formulations, allowing the study of a wide range of physical and geometric parameters. The cavity geometry includes a wavy right wall maintained at a cold temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{c}$$\end{document}) and a flat left wall with localized heat sources (Th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{h}$$\end{document}). The findings reveal the significant influence of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}, and Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} on the flow structure and thermal distribution. An increase in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} intensifies convective currents and enhances heat transfer efficiency, while the position of the heat source (D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}) modulates the distribution of buoyancy forces. The addition of nanoparticles (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}) improves the effective thermal conductivity of the hybrid nanofluid, enhancing both fluid and solid phase heat transfer. Positive values of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} further amplify buoyancy-driven convection, resulting in higher Nusselt numbers (Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Nu$$\end{document}). The impact of porosity (ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}) and Rayleigh number (Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ra$$\end{document}) was also evaluated. Higher porosity values promote fluid permeability, facilitating stronger convective currents and more uniform temperature profiles. Similarly, increasing Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ra$$\end{document} shifts the dominant heat transfer mechanism from conduction to convection, enhancing thermal mixing and efficiency. The Hartmann number (Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}) was found to suppress convection due to magnetic damping effects, reducing heat transfer rates. However, this damping can be partially offset by the enhanced thermal conductivity from higher nanoparticle concentrations (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}). AI-based models, specifically XGBoost, were employed to predict the Nusselt number for nanofluid and solid phases and the average heat transfer characteristics. The predictions align well with the numerical results, validating the model’s applicability for optimizing thermal systems. Overall, the study demonstrates that careful selection of parameters such as B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}, ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}, and Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}, coupled with the use of hybrid nanofluids, can significantly improve the thermal performance of porous cavities under MHD conditions.
引用
收藏
相关论文
共 50 条
  • [1] MHD natural convection of hybrid nanofluid in an open wavy cavity
    Ashorynejad, Hamid Reza
    Shahriari, Alireza
    RESULTS IN PHYSICS, 2018, 9 : 440 - 455
  • [2] Unsteady MHD hybrid nanofluid mixed convection heat transfer in a wavy porous cavity with thermal radiation
    A. M. Rashad
    Hussein Togun
    M. A. Mansour
    T. Salah
    T. Armaghani
    Journal of Thermal Analysis and Calorimetry, 2024, 149 : 2425 - 2442
  • [3] Unsteady MHD hybrid nanofluid mixed convection heat transfer in a wavy porous cavity with thermal radiation
    Rashad, A. M.
    Togun, Hussein
    Mansour, M. A.
    Salah, T.
    Armaghani, T.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (05) : 2425 - 2442
  • [4] Mixed convection heat transfer and entropy generation of MHD hybrid nanofluid in a cubic porous cavity with wavy wall and rotating cylinders
    Jiang, Xiaobin
    Hatami, Mohammad
    Abderrahmane, Aissa
    Younis, Obai
    Makhdoum, Basim M.
    Guedri, Kamel
    APPLIED THERMAL ENGINEERING, 2023, 226
  • [5] Hybrid Nanofluid Unsteady MHD Natural Convection in an Inclined Wavy Porous Enclosure with Radiation Effect, Partial Heater and Heat Generation/Absorption
    Armaghani, T.
    Rashad, A. M.
    Togun, Hussein
    Mansour, M. A.
    Salah, T.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2024, 48 (03) : 971 - 988
  • [6] Magnetohydrodynamic natural convection of a reacting hybrid nanofluid in a porous wavy-walled cavity
    Roy, Nepal Chandra
    Monira, Sherajum
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (01):
  • [7] Magnetohydrodynamic natural convection of a reacting hybrid nanofluid in a porous wavy-walled cavity
    Roy, Nepal Chandra
    Monira, Sherajum
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023,
  • [8] MHD free convection in a partially open wavy porous cavity filled with nanofluid
    Prakash, Om
    Barman, Prabir
    Rao, P. S.
    Sharma, Ram Prakash
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023, 84 (05) : 449 - 463
  • [9] Natural convection in a wavy porous cavity with sinusoidal heating and internal heat generation
    Cheong, Huey Tyng
    Sivasankaran, S.
    Bhuvaneswari, M.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2017, 27 (02) : 287 - 309
  • [10] MHD NATURAL CONVECTION OF HYBRID NANOFLUID IN A POROUS CAVITY HEATED WITH A SINUSOIDAL TEMPERATURE DISTRIBUTION
    Jino, L.
    Kumar, A. Vanav
    COMPUTATIONAL THERMAL SCIENCES, 2021, 13 (05): : 83 - 99