Renormalized Solutions for the Non-local Equations in Fractional Musielak–Sobolev Spaces

被引:0
|
作者
Ying Li [1 ]
Chao Zhang [2 ]
机构
[1] Harbin Institute of Technology,School of Mathematics
[2] Harbin Institute of Technology,School of Mathematics and Institute for Advanced Study in Mathematics
来源
The Journal of Geometric Analysis | 2024年 / 34卷 / 12期
关键词
Renormalized solutions; Existence; Uniqueness; -data; Fractional Musielak–Sobolev spaces; 35D99; 35R11; 35J60;
D O I
10.1007/s12220-024-01835-y
中图分类号
学科分类号
摘要
We consider the non-local equations with non-negative L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-data in the fractional Musielak–Sobolev spaces. Utilizing approximation and energy methods, we establish the existence and uniqueness of non-negative renormalized solutions for such problems. The operators discussed in this work include the fractional Orlicz operators with variable exponents, the fractional double-phase operators with variable exponents, and the anisotropic fractional p-Laplacian operators, among others.
引用
收藏
相关论文
共 50 条