Renormalized Solutions for the Non-local Equations in Fractional Musielak–Sobolev Spaces

被引:0
|
作者
Ying Li [1 ]
Chao Zhang [2 ]
机构
[1] Harbin Institute of Technology,School of Mathematics
[2] Harbin Institute of Technology,School of Mathematics and Institute for Advanced Study in Mathematics
来源
The Journal of Geometric Analysis | 2024年 / 34卷 / 12期
关键词
Renormalized solutions; Existence; Uniqueness; -data; Fractional Musielak–Sobolev spaces; 35D99; 35R11; 35J60;
D O I
10.1007/s12220-024-01835-y
中图分类号
学科分类号
摘要
We consider the non-local equations with non-negative L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-data in the fractional Musielak–Sobolev spaces. Utilizing approximation and energy methods, we establish the existence and uniqueness of non-negative renormalized solutions for such problems. The operators discussed in this work include the fractional Orlicz operators with variable exponents, the fractional double-phase operators with variable exponents, and the anisotropic fractional p-Laplacian operators, among others.
引用
收藏
相关论文
共 50 条
  • [1] Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces
    Matteo Cozzi
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 555 - 578
  • [2] Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces
    Cozzi, Matteo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 555 - 578
  • [3] Ground State Solutions for a Non-Local Type Problem in Fractional Orlicz Sobolev Spaces
    Wang, Liben
    Zhang, Xingyong
    Liu, Cuiling
    AXIOMS, 2024, 13 (05)
  • [4] Fractional Musielak spaces: a class of non-local elliptic system involving generalized nonlinearity
    El-Houari, Hamza
    Moussa, Hicham
    Sabiki, Hajar
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, : 2547 - 2572
  • [5] Fractional Musielak spaces: a class of non-local problem involving concave–convex nonlinearity
    Hamza El-Houari
    Moussa Hicham
    Soufiane Kassimi
    Hajar Sabiki
    Journal of Elliptic and Parabolic Equations, 2024, 10 : 87 - 125
  • [6] Fractional Musielak spaces: a class of non-local problem involving concave-convex nonlinearity
    El-Houari, Hamza
    Hicham, Moussa
    Kassimi, Soufiane
    Sabiki, Hajar
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 87 - 125
  • [7] Two weak solutions for perturbed non-local fractional equations
    Zhang, Binlin
    Ferrara, Massimiliano
    APPLICABLE ANALYSIS, 2015, 94 (05) : 891 - 902
  • [8] MULTIPLE SOLUTIONS FOR PERTURBED NON-LOCAL FRACTIONAL LAPLACIAN EQUATIONS
    Ferrara, Massimiliano
    Guerrini, Luca
    Zhang, Binlin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [9] Multiplicity of solutions for a class of superlinear non-local fractional equations
    Zhang, Binlin
    Ferrara, Massimiliano
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (05) : 583 - 595
  • [10] GROUND STATE SOLUTIONS FOR NON-LOCAL FRACTIONAL SCHRODINGER EQUATIONS
    Pu, Yang
    Liu, Jiu
    Tang, Chun-Lei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,