Application of a Convolutional Neural Network for Automated Analysis of X-ray Photoelectron Spectra of Heterogeneous Catalysts

被引:0
|
作者
Vakhrushev, A. A. [1 ,2 ]
Matveev, A. V. [2 ]
Nartova, A. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Boreskov Inst Catalysis, Fed Res Ctr, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
deep machine learning; XPS; automatic spectral analysis; convolutional neural network; heterogeneous catalysts; MASS-SPECTROMETRY; XPS;
D O I
10.1134/S0023158424602687
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
AbstractA convolutional neural network was used to solve the problem of segmentation of XPS spectra. The developed combination of recognition using a machine learning model and a post-processing algorithm provided fast automatic analysis of XPS data. The results of determining the positions and areas of peaks were in good agreement with both the results of manual analysis and handbook values. The proposed approach was applied to analyze the XPS spectra of heterogeneous catalysts (Pd/Al2O3 and Sr2TiO4) and chemical compounds used in the preparation of catalysts (AgCl and TiO2).
引用
收藏
页码:788 / 796
页数:9
相关论文
共 50 条
  • [41] AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
    Kritika Iyer
    Cyrus P. Najarian
    Aya A. Fattah
    Christopher J. Arthurs
    S. M. Reza Soroushmehr
    Vijayakumar Subban
    Mullasari A. Sankardas
    Raj R. Nadakuditi
    Brahmajee K. Nallamothu
    C. Alberto Figueroa
    Scientific Reports, 11
  • [42] ANALYSIS OF X-RAY PHOTOELECTRON-SPECTRA THROUGH THEIR EVEN DERIVATIVES
    PAVLATH, AE
    MILLARD, MM
    APPLIED SPECTROSCOPY, 1979, 33 (05) : 502 - 509
  • [43] Lightweight convolutional neural network for chest X-ray images classification
    Yen, Chih-Ta
    Tsao, Chia-Yu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
    Iyer, Kritika
    Najarian, Cyrus P.
    Fattah, Aya A.
    Arthurs, Christopher J.
    Soroushmehr, S. M. Reza
    Subban, Vijayakumar
    Sankardas, Mullasari A.
    Nadakuditi, Raj R.
    Nallamothu, Brahmajee K.
    Figueroa, C. Alberto
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [45] Using Convolutional Neural Network for Chest X-ray Image classification
    Soric, Matija
    Pongrac, Danijela
    Inza, Inaki
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 1771 - 1776
  • [46] Detection of Scoliosis in X-Ray Images Using a Convolutional Neural Network
    Salazar-Fierro, Fausto
    Cumbal, Carlos
    Trejo-Espana, Diego
    Leon-Fernandez, Cayo
    Pusda-Chulde, Marco
    Garcia-Santilllan, Ivan
    TECHNOLOGIES AND INNOVATION, CITI 2024, 2025, 2276 : 167 - 183
  • [47] Application of X-ray photoelectron spectroscopy in the analysis of polymer surfaces
    Huiban, Y
    Lynch, J
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2003, 58 (308): : 316 - +
  • [48] Automated diagnosis of COVID-19 using chest X-ray image processing by a Convolutional Neural Network
    Alotaib, Reem
    Alharbi, Abir
    Algethami, Abdulaziz
    Alkenawi, Abdulkader
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025, 102 (02) : 224 - 244
  • [49] Automated COVID-19 detection using Deep Convolutional Neural Network and Chest X-ray Images
    Agrawal, Tarun
    Choudhary, Prakash
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 277 - 281
  • [50] Automated detection of COVID-19 through convolutional neural network using chest x-ray images
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Zhang, Yanchun
    Wang, Kate
    PLOS ONE, 2022, 17 (01):