Granularity for Mixed-Integer Polynomial Optimization Problems

被引:0
|
作者
Eggen, Carl [1 ]
Stein, Oliver [2 ]
Volkwein, Stefan [1 ]
机构
[1] Univ Konstanz, Dept Math & Stat, Universitatsstr 10, D-78464 Constance, Germany
[2] Karlsruhe Inst Technol KIT, Inst Operat Res, Blucherstr 17, D-76185 Karlsruhe, Germany
关键词
Mixed-integer nonlinear programming; Granularity; Rounding; Polynomial optimization; Semidefinite programming; ALGORITHM;
D O I
10.1007/s10957-025-02631-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Finding good feasible points is crucial in mixed-integer programming. For this purpose we combine a sufficient condition for consistency, called granularity, with the moment-/sum-of-squares-hierarchy from polynomial optimization. If the mixed-integer problem is granular, we obtain feasible points by solving continuous polynomial problems and rounding their optimal points. The moment-/sum-of-squares-hierarchy is hereby used to solve those continuous polynomial problems, which generalizes known methods from the literature. Numerical examples from the MINLPLib illustrate our approach.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Mixed-integer bilinear programming problems
    Adams, Warren P.
    Sherali, Hanif D.
    Mathematical Programming, Series A, 1993, 59 (03): : 279 - 305
  • [32] Feasible rounding approaches for equality constrained mixed-integer optimization problems
    Neumann, Christoph
    Stein, Oliver
    OPTIMIZATION, 2023, 72 (02) : 581 - 606
  • [33] Solution of Mixed-Integer Optimization Problems in Bioinformatics with Differential Evolution Method
    Salihov, Sergey
    Maltsov, Dmitriy
    Samsonova, Maria
    Kozlov, Konstantin
    MATHEMATICS, 2021, 9 (24)
  • [34] An exact penalty global optimization approach for mixed-integer programming problems
    S. Lucidi
    F. Rinaldi
    Optimization Letters, 2013, 7 : 297 - 307
  • [35] Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems
    Liuzzi, Giampaolo
    Lucidi, Stefano
    Rinaldi, Francesco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (03) : 933 - 965
  • [36] Outer approximation for global optimization of mixed-integer quadratic bilevel problems
    Thomas Kleinert
    Veronika Grimm
    Martin Schmidt
    Mathematical Programming, 2021, 188 : 461 - 521
  • [37] An exact penalty global optimization approach for mixed-integer programming problems
    Lucidi, S.
    Rinaldi, F.
    OPTIMIZATION LETTERS, 2013, 7 (02) : 297 - 307
  • [38] Parallel Global Optimization for Non-convex Mixed-Integer Problems
    Barkalov, Konstantin
    Lebedev, Ilya
    SUPERCOMPUTING (RUSCDAYS 2019), 2019, 1129 : 98 - 109
  • [39] MINIMAL INEQUALITIES FOR MIXED-INTEGER PROBLEMS
    BLAIR, CE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A470 - A471
  • [40] A Global Optimization Algorithm for Non-Convex Mixed-Integer Problems
    Gergel, Victor
    Barkalov, Konstantin
    Lebedev, Ilya
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 78 - 81