A new segment shift M-ary differential chaos shift keying aided by discrete sine transform

被引:0
|
作者
He, Lifang [1 ]
Wu, Xinggen [1 ]
Yang, Yao [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential chaos shift keying; Index modulation; Segment shift; <italic>M</italic>-ary phase-shift keying; Discrete sine transform;
D O I
10.1007/s11276-024-03847-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To improve the reliability and transmission rate of chaotic communication method using chaos segment shift correlation delay shift keying (SSCDSK) system, a new segment shift M-ary differential chaos shift keying aided by discrete sine transform (DST-SS-MDCSK) is proposed. At the transmitter, the chaotic base signals are used as the reference signals. After an improved segment shift, two approximately orthogonal signals are generated and then modulated through M-ary phase-shift keying (MPSK) modulator to obtain the data bearing signals. This method combines index modulation(IM) technology to effectively increase the system's transmission rate. To further improve the transmission rate, the reference signals generated by different chaos generators are summed up with the data bearing signals by discrete sine transform (DST) codes. At the receiver, the recovered reference signals are correlated with the data bearing signals. The theoretical bit error rate (BER) is derived for additive white Gaussian noise (AWGN) channel and multipath Rayleigh fading channel (RFC), and the accuracy of the BER is verified through Monte Carlo simulations. The experimental results indicate that, under similar conditions, the DST-SS-MDCSK system achieved a (4N-1)x100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(4N-1)\times 100 \%$$\end{document} increase in transmission rate compared with the SSCDSK system , where N represents the dimension of the DST matrix. With equal BER, a performance gain of approximately 1 dB can be achieved.
引用
收藏
页码:2129 / 2142
页数:14
相关论文
共 50 条
  • [21] Design of Carrier Index Keying-Aided M-Ary Differential Chaos Cyclic Shift Keying for D2D Communications
    Cai, Xiangming
    Wang, Deqing
    Xu, Weikai
    Wang, Lin
    Lau, Francis C. M.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (06) : 3233 - 3250
  • [22] Design and performance analysis of generalised carrier index M-ary differential chaos shift keying modulation
    Cheng, Guixian
    Wang, Lin
    Chen, Qiwang
    Chen, Guanrong
    IET COMMUNICATIONS, 2018, 12 (11) : 1324 - 1331
  • [23] New BER expression of hierarchical M-ary phase shift keying
    Lee, Jaeyoon
    Cho, Kyongkuk
    Yoon, Dongweon
    ETRI JOURNAL, 2007, 29 (06) : 707 - 715
  • [24] M-ary amplitude shift keying OFDM system
    Xiong, FQ
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2003, 51 (10) : 1638 - 1642
  • [25] Reception of M-ary Orthogonal Negacyclic Code Shift Keying Signals Based on Odd Discrete Fourier Transform
    Gepko I.A.
    Radioelectronics and Communications Systems, 2022, 65 (08) : 387 - 399
  • [26] Design and Performance Analysis of Multilevel Code-Shifted M-Ary Differential Chaos Shift Keying System
    Zhang, Bangquan
    Xu, Weikai
    Wu, Yunfeng
    Wang, Lin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (07) : 1257 - 1261
  • [27] M-ary differential chaos shift keying with carrier index modulation for high-data-rate transmission
    Yu, Bin
    Jiang, Guo-Ping
    Yang, Hua
    Jia, Ya-Qiong
    IET COMMUNICATIONS, 2024, 18 (20) : 1826 - 1839
  • [28] M-ary nonlinear continuous phase frequency shift keying
    Jou, PY
    Lee, JY
    Kwon, SL
    Kang, CE
    ELECTRONICS LETTERS, 1996, 32 (19) : 1755 - 1756
  • [29] M-ary nonlinear continuous phase frequency shift keying
    Electron Lett, 19 (1755-1756):
  • [30] M-ary phase position shift keying with orthogonal signalling
    Lu, Conghui
    Wu, Lenan
    Chen, Peng
    Wang, Jiwu
    Liu, Huaping
    IET COMMUNICATIONS, 2015, 9 (13) : 1627 - 1634