Orbits and invariants for coisotropy representations

被引:1
|
作者
Panyushev, Dmitri I. [1 ]
机构
[1] Higher Sch Modern Math MIPT, Moscow 115184, Russia
关键词
SIMPLE LIE-GROUPS; HOMOGENEOUS SPACES; COMPLEXITY; ALGEBRAS;
D O I
10.1007/s00229-024-01601-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a subgroup H of a reductive group G, let m=h perpendicular to subset of g & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {m}=\mathfrak {h}<^>\perp \subset \mathfrak {g}<^>*$$\end{document} be the cotangent space of {H}is an element of G/H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{H\}\in G/H$$\end{document}. The linear action (H:m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H:\mathfrak {m})$$\end{document} is the coisotropy representation. It is known that the complexity and rank of G/H (denoted c and r, respectively) are encoded in properties of (H:m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H:\mathfrak {m})$$\end{document}. We complement existing results on c, r, and (H:m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H:\mathfrak {m})$$\end{document}, especially for quasiaffine varieties G/H. For instance, if the algebra of invariants k[m]H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Bbbk [\mathfrak {m}]<^>H$$\end{document} is finitely generated, then NH(m)subset of m boolean AND NG(g & lowast;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {N}_H(\mathfrak {m})\subset \mathfrak {m}\cap \mathfrak {N}_G(\mathfrak {g}<^>*)$$\end{document}. Moreover, if G/H is affine, then NH(m)=m boolean AND NG(g & lowast;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {N}_H(\mathfrak {m})=\mathfrak {m}\cap \mathfrak {N}_G(\mathfrak {g}<^>*)$$\end{document} if and only if c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0$$\end{document}. We also prove that the variety m boolean AND NG(g & lowast;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {m}\cap \mathfrak {N}_G(\mathfrak {g}<^>*)$$\end{document} is pure, of dimension dimm-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim \mathfrak {m}-r$$\end{document}. Two other topics considered are (i) a relationship between varieties G/H of complexity at most 1 and the homological dimension of the algebra k[m]H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Bbbk [\mathfrak {m}]<^>H$$\end{document} and (ii) the Poisson structure of k[m]H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Bbbk [\mathfrak {m}]<^>H$$\end{document} and Poisson-commutative subalgebras A subset of k[m]H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\subset \Bbbk [\mathfrak {m}]<^>H$$\end{document} such that trdegA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {trdeg\,}}{\mathcal {A}}$$\end{document} is maximal.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Coxeter orbits and modular representations
    Bonnafe, Cedric
    Rouquier, Raphael
    NAGOYA MATHEMATICAL JOURNAL, 2006, 183 : 1 - 34
  • [22] TEMPERED REPRESENTATIONS AND NILPOTENT ORBITS
    Harris, Benjamin
    REPRESENTATION THEORY, 2012, 16 : 610 - 619
  • [23] Determinantal representations of closed orbits
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (03) : 992 - 1002
  • [24] TOPOLOGICAL INVARIANTS AND DETECTION OF PERIODIC-ORBITS
    SRZEDNICKI, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 111 (02) : 283 - 298
  • [25] Octupolar invariants for compact binaries on quasicircular orbits
    Nolan, Patrick
    Kavanagh, Chris
    Dolan, Sam R.
    Ottewill, Adrian C.
    Warburton, Niels
    Wardell, Barry
    PHYSICAL REVIEW D, 2015, 92 (12)
  • [26] Orbits and invariants of cubic matrices of order three
    Nurmiev, AG
    SBORNIK MATHEMATICS, 2000, 191 (5-6) : 717 - 724
  • [27] Orbits and invariants associated with a pair of commuting involutions
    Helminck, AG
    Schwarz, GW
    DUKE MATHEMATICAL JOURNAL, 2001, 106 (02) : 237 - 279
  • [28] Tidal invariants for compact binaries on quasicircular orbits
    Dolan, Sam R.
    Nolan, Patrick
    Ottewill, Adrian C.
    Warburton, Niels
    Wardell, Barry
    PHYSICAL REVIEW D, 2015, 91 (02):
  • [29] Secondary invariants of Birkhoff minimizers and heteroclinic orbits
    Miao, Xue-Qing
    Qin, Wen-Xin
    Wang, Ya-Nan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 1522 - 1557
  • [30] Kawanaka invariants for representations of Weyl groups
    Gyoja, A
    Nishiyama, K
    Taniguchi, K
    JOURNAL OF ALGEBRA, 2000, 225 (02) : 842 - 871