Decentralized multi-robot formation control in environments with non-convex and dynamic obstacles based on path planning algorithms

被引:0
|
作者
Luis E. Ruiz-Fernandez [1 ]
Javier Ruiz-Leon [2 ]
David Gomez-Gutierrez [1 ]
Rafael Murrieta-Cid [2 ]
机构
[1] Automatic Control Department,
[2] Centro de Investigación y de Estudios Avanzados del I.P.N.,undefined
[3] Intelligent Systems Research Lab,undefined
[4] Intel Tecnología de México,undefined
[5] Instituto Tecnológico José Mario Molina Pasquel y Henríquez,undefined
[6] Tecnológico Nacional de México,undefined
[7] Computer Science Department,undefined
[8] Centro de Investigación en Matemáticas,undefined
关键词
Multi-agent systems; Multi-robot systems; Formation control; Path planning; Collision avoidance; Optimal reciprocal collision avoidance (ORCA);
D O I
10.1007/s11370-024-00582-x
中图分类号
学科分类号
摘要
In this paper, we propose a new strategy to solve the multi-robot formation problem. Considering a set of holonomic robots, a decentralized algorithm is proposed to guide the robots to achieve a predefined formation while avoiding collisions with non-convex obstacles, dynamic obstacles, and other robots. Local collision avoidance is achieved using a variant of the well-known ORCA (optical reciprocal collision avoidance) algorithm. We modify this algorithm to ensure the continuity of the robots’ controls (velocities). The implementation of an online replanning algorithm, RRT, is essential to guide the robots and prevent them from getting stuck in minima. The resulting method guarantees formation convergence, and several simulations are presented to illustrate its effectiveness.
引用
收藏
页码:215 / 232
页数:17
相关论文
共 50 条
  • [21] Motion control in dynamic multi-robot environments
    Bowling, M
    Veloso, M
    ROBOCUP-99: ROBOT SOCCER WORLD CUP III, 2000, 1856 : 222 - 230
  • [22] DECENTRALIZED MULTI-ROBOT MOTION PLANNING APPLICABLE TO DYNAMIC ENVIRONMENT
    Wu, Bin
    Suh, C. Steve
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 4, 2020,
  • [23] Efficient Heuristics for Multi-Robot Path Planning in Crowded Environments
    Guo, Teng
    Yu, Jingjin
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 6749 - 6756
  • [24] Effective Heuristics for Multi-Robot Path Planning in Warehouse Environments
    Han, Shuai D.
    Yu, Jingjin
    2019 INTERNATIONAL SYMPOSIUM ON MULTI-ROBOT AND MULTI-AGENT SYSTEMS (MRS 2019), 2019, : 10 - 12
  • [25] Multi-robot Path Planning for Complete Coverage with Genetic Algorithms
    Sun, Rongchuan
    Tang, Chunhua
    Zheng, Jianying
    Zhou, Yongzheng
    Yu, Shumei
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT V, 2019, 11744 : 349 - 361
  • [26] Decentralized centroid and formation control for multi-robot systems
    Antonelli, Gianluca
    Arrichiello, Filippo
    Caccavale, Fabrizio
    Marino, Alessandro
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 3511 - 3516
  • [27] Learning Decentralized Control Policies for Multi-Robot Formation
    Jiang, Chao
    Chen, Zhuo
    Guo, Yi
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 758 - 765
  • [28] Distributed Weighted Coverage for Multi-Robot Systems in Non-Convex Environment
    Cao, Kai
    Chen, Yangquan
    Gao, Song
    Dang, Haixin
    An, Di
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [29] The Design of Interfaces for Multi-Robot Path Planning and Control
    Andolina, Salvatore
    Forlizzi, Jodi
    2014 IEEE WORKSHOP ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS (ARSO), 2014, : 7 - 13
  • [30] Multi-Robot Control Using Coverage Over Time-Varying Non-Convex Domains
    Xu, Xiaotian
    Diaz-Mercado, Yancy
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 4536 - 4542