Decentralized multi-robot formation control in environments with non-convex and dynamic obstacles based on path planning algorithms

被引:0
|
作者
Luis E. Ruiz-Fernandez [1 ]
Javier Ruiz-Leon [2 ]
David Gomez-Gutierrez [1 ]
Rafael Murrieta-Cid [2 ]
机构
[1] Automatic Control Department,
[2] Centro de Investigación y de Estudios Avanzados del I.P.N.,undefined
[3] Intelligent Systems Research Lab,undefined
[4] Intel Tecnología de México,undefined
[5] Instituto Tecnológico José Mario Molina Pasquel y Henríquez,undefined
[6] Tecnológico Nacional de México,undefined
[7] Computer Science Department,undefined
[8] Centro de Investigación en Matemáticas,undefined
关键词
Multi-agent systems; Multi-robot systems; Formation control; Path planning; Collision avoidance; Optimal reciprocal collision avoidance (ORCA);
D O I
10.1007/s11370-024-00582-x
中图分类号
学科分类号
摘要
In this paper, we propose a new strategy to solve the multi-robot formation problem. Considering a set of holonomic robots, a decentralized algorithm is proposed to guide the robots to achieve a predefined formation while avoiding collisions with non-convex obstacles, dynamic obstacles, and other robots. Local collision avoidance is achieved using a variant of the well-known ORCA (optical reciprocal collision avoidance) algorithm. We modify this algorithm to ensure the continuity of the robots’ controls (velocities). The implementation of an online replanning algorithm, RRT, is essential to guide the robots and prevent them from getting stuck in minima. The resulting method guarantees formation convergence, and several simulations are presented to illustrate its effectiveness.
引用
收藏
页码:215 / 232
页数:17
相关论文
共 50 条
  • [1] Scalable Coverage Path Planning of Multi-Robot Teams for Monitoring Non-Convex Areas
    Collins, Leighton
    Ghassemi, Payam
    Esfahani, Ehsan T.
    Doermann, David
    Dantu, Karthik
    Chowdhury, Souma
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 7393 - 7399
  • [2] Mobile Robot Path Planning in Environments Cluttered with Non-convex Obstacles Using Particle Swarm Optimization
    Alam, Muhammad Shahab
    Rafique, Muhammad Usman
    2015 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS ICCAR 2015, 2015, : 32 - 36
  • [3] Coverage Control for Exploration of Unknown Non-convex Environments with Limited Range Multi-robot Systems
    Catellani, Mattia
    Pratissoli, Federico
    Bertoncelli, Filippo
    Sabattini, Lorenzo
    DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, DARS 2022, 2024, 28 : 550 - 562
  • [4] Distributed multi-robot formation control in dynamic environments
    Alonso-Mora, Javier
    Montijano, Eduardo
    Nageli, Tobias
    Hilliges, Otmar
    Schwager, Mac
    Rus, Daniela
    AUTONOMOUS ROBOTS, 2019, 43 (05) : 1079 - 1100
  • [5] Distributed multi-robot formation control in dynamic environments
    Javier Alonso-Mora
    Eduardo Montijano
    Tobias Nägeli
    Otmar Hilliges
    Mac Schwager
    Daniela Rus
    Autonomous Robots, 2019, 43 : 1079 - 1100
  • [6] Towards the Achievement of Path Planning with Multi-robot Systems in Dynamic Environments
    G. Kyprianou
    L. Doitsidis
    S. A. Chatzichristofis
    Journal of Intelligent & Robotic Systems, 2022, 104
  • [7] Towards the Achievement of Path Planning with Multi-robot Systems in Dynamic Environments
    Kyprianou, G.
    Doitsidis, L.
    Chatzichristofis, S. A.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 104 (01)
  • [8] Path Planning for Optimizing Survivability of Multi-Robot Formation in Adversarial Environments
    Shapira, Yaniv
    Agmon, Noa
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 4544 - 4549
  • [9] Decentralized Task and Path Planning for Multi-Robot Systems
    Chen, Yuxiao
    Rosolia, Ugo
    Ames, Aaron D.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 4337 - 4344
  • [10] Neural Network Based Path Planning for A Multi-Robot System with Moving Obstacles
    Li, Howard
    Yang, Simon X.
    Biletskiy, Yevgen
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, VOLS 1 AND 2, 2008, : 163 - +