MCPA: multi-scale cross perceptron attention network for 2D medical image segmentation

被引:0
|
作者
Liang Xu [1 ]
Mingxiao Chen [2 ]
Yi Cheng [3 ]
Pengwu Song [3 ]
Pengfei Shao [1 ]
Shuwei Shen [2 ]
Peng Yao [3 ]
Ronald X. Xu [1 ]
机构
[1] University of Science and Technology of China,School of Biomedical Engineering Division of Life Sciences and Medicine
[2] Suzhou Institute for Advanced Research,Department of Precision Machinery and Precision Instrument
[3] University of Science and Technology of China,School of Microelectronics
[4] University of Science and Technology of China,undefined
[5] University of Science and Technology of China,undefined
关键词
Medical image; Segmentation; Multi-scale; Cross perceptron; Progressive dual-branch structure;
D O I
10.1007/s40747-024-01671-1
中图分类号
学科分类号
摘要
The UNet architecture, based on convolutional neural networks (CNN), has demonstrated its remarkable performance in medical image analysis. However, it faces challenges in capturing long-range dependencies due to the limited receptive fields and inherent bias of convolutional operations. Recently, numerous transformer-based techniques have been incorporated into the UNet architecture to overcome this limitation by effectively capturing global feature correlations. However, the integration of the Transformer modules may result in the loss of local contextual information during the global feature fusion process. In this work, we propose a 2D medical image segmentation model called multi-scale cross perceptron attention network (MCPA). The MCPA consists of three main components: an encoder, a decoder, and a Cross Perceptron. The Cross Perceptron first captures the local correlations using multiple Multi-scale Cross Perceptron modules, facilitating the fusion of features across scales. The resulting multi-scale feature vectors are then spatially unfolded, concatenated, and fed through a Global Perceptron module to model global dependencies. Considering the high computational cost of using 3D neural network models, and the fact that many important clinical data can only be obtained in two dimensions, our MCPA focuses on 2D medical image segmentation. Furthermore, we introduce a progressive dual-branch structure (PDBS) to address the semantic segmentation of the image involving finer tissue structures. This structure gradually shifts the segmentation focus of MCPA network training from large-scale structural features to more sophisticated pixel-level features. We evaluate our proposed MCPA model on several publicly available medical image datasets from different tasks and devices, including the open large-scale dataset of CT (Synapse), MRI (ACDC), and widely used 2D medical imaging datasets captured by fundus camera (DRIVE, CHASE_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}DB1, HRF), and OCTA (ROSE). The experimental results show that our MCPA model achieves state-of-the-art performance.
引用
收藏
相关论文
共 50 条
  • [41] HM-Net: Hybrid multi-scale cross-order fusion network for medical image segmentation
    Zhao, Guangzhe
    Zhu, Xingguo
    Wang, Xueping
    Yan, Feihu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 98
  • [42] MAXFormer: Enhanced transformer for medical image segmentation with multi-attention and multi-scale features fusion
    Liang, Zhiwei
    Zhao, Kui
    Liang, Gang
    Li, Siyu
    Wu, Yifei
    Zhou, Yiping
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [43] Segmentation of aerial image with multi-scale feature and attention model
    Ning Q.
    Hu S.-Y.
    Lei Y.-J.
    Chen B.-C.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (06): : 1218 - 1224
  • [44] A Multi-scale and Multi-attention Network for Skin Lesion Segmentation
    Wu, Cong
    Zhang, Hang
    Chen, Dingsheng
    Gan, Haitao
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 537 - 550
  • [45] STACKED MULTI-SCALE ATTENTION NETWORK FOR IMAGE COLORIZATION
    Jiang, Bin
    Xu, Fangqiang
    Xia, Jun
    Yang, Chao
    Huang, Wei
    Huang, Yun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2225 - 2229
  • [46] CrossFormer: Multi-scale cross-attention for polyp segmentation
    Chen, Lifang
    Ge, Hongze
    Li, Jiawei
    IET IMAGE PROCESSING, 2023, 17 (12) : 3441 - 3452
  • [47] Multi-Scale Context Attention Network for Image Retrieval
    Lou, Yihang
    Bai, Yan
    Wang, Shiqi
    Duan, Ling-Yu
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1128 - 1136
  • [48] Parallel multi-scale network with attention mechanism for pancreas segmentation
    Long, Jianwu
    Song, Xinlei
    An, Yong
    Li, Tong
    Zhu, Jiangzhou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (01) : 110 - 119
  • [49] A Multi-Scale Residual Attention Network for Retinal Vessel Segmentation
    Jiang, Yun
    Yao, Huixia
    Wu, Chao
    Liu, Wenhuan
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 16
  • [50] Attention based multi-scale parallel network for polyp segmentation
    Song, Pengfei
    Li, Jinjiang
    Fan, Hui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146