Predicting the risk of diabetes complications using machine learning and social administrative data in a country with ethnic inequities in health: Aotearoa New Zealand

被引:0
|
作者
Nhung Nghiem [1 ]
Nick Wilson [2 ]
Jeremy Krebs [1 ]
Truyen Tran [3 ]
机构
[1] University of Otago Wellington,Department of Public Health
[2] Australian National University,John Curtin School of Medical Research
[3] University of Otago Wellington,Department of Medicine
[4] Deakin University,Applied Artificial Intelligence Institute (A2I2)
关键词
Machine learning; Diabetes complications; Cardiovascular disease; Risk prediction; Health and social administrative data;
D O I
10.1186/s12911-024-02678-x
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [1] Correction: Predicting the risk of diabetes complications using machine learning and social administrative data in a country with ethnic inequities in health: Aotearoa New Zealand
    Nhung Nghiem
    Nick Wilson
    Jeremy Krebs
    Truyen Tran
    BMC Medical Informatics and Decision Making, 24 (1)
  • [2] Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
    Mathieu Ravaut
    Hamed Sadeghi
    Kin Kwan Leung
    Maksims Volkovs
    Kathy Kornas
    Vinyas Harish
    Tristan Watson
    Gary F. Lewis
    Alanna Weisman
    Tomi Poutanen
    Laura Rosella
    npj Digital Medicine, 4
  • [3] Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
    Ravaut, Mathieu
    Sadeghi, Hamed
    Leung, Kin Kwan
    Volkovs, Maksims
    Kornas, Kathy
    Harish, Vinyas
    Watson, Tristan
    Lewis, Gary F.
    Weisman, Alanna
    Poutanen, Tomi
    Rosella, Laura
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [4] Ethnic differences in stroke outcome in Aotearoa New Zealand: Administrative data analysis
    Corbin, M.
    Denison, H.
    Thompson, S.
    Harwood, M.
    Gommans, J.
    Davis, A.
    Barber, A.
    Fink, J.
    Cadilhac, D. A.
    Levack, W.
    McNaughton, Harry H.
    Abernethy, G.
    Girvan, J.
    Feigin, V
    Kim, J.
    Wilson, A.
    Douwes, J.
    Ranta, A.
    INTERNATIONAL JOURNAL OF STROKE, 2021, 16 (1_SUPPL) : 8 - 8
  • [5] Predicting common maternal postpartum complications: leveraging health administrative data and machine learning
    Betts, K. S.
    Kisely, S.
    Alati, R.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2019, 126 (06) : 702 - 709
  • [6] PREDICTING THE RISK OF STROKE USING MACHINE LEARNING ON A LARGE ADMINISTRATIVE HEALTH DATABASE
    Ghiani, M.
    Maywald, U.
    Wilke, T.
    VALUE IN HEALTH, 2022, 25 (12) : S14 - S14
  • [7] National prevalence of gout derived from administrative health data in Aotearoa New Zealand
    Winnard, Doone
    Wright, Craig
    Taylor, William J.
    Jackson, Gary
    Karu, Leanne Te
    Gow, Peter J.
    Arroll, Bruce
    Thornley, Simon
    Gribben, Barry
    Dalbeth, Nicola
    RHEUMATOLOGY, 2012, 51 (05) : 901 - 909
  • [8] Understanding prison violence in Aotearoa New Zealand using machine learning
    Brabyn, Lars
    Day, Andrew
    Grace, Randolph
    Tamatea, Armon
    NEW ZEALAND GEOGRAPHER, 2023, 79 (03) : 234 - 245
  • [9] Predicting youth diabetes risk using NHANES data and machine learning
    Vangeepuram, Nita
    Liu, Bian
    Chiu, Po-Hsiang
    Wang, Linhua
    Pandey, Gaurav
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Predicting youth diabetes risk using NHANES data and machine learning
    Nita Vangeepuram
    Bian Liu
    Po-hsiang Chiu
    Linhua Wang
    Gaurav Pandey
    Scientific Reports, 11