Freudenthal duality in conformal field theory

被引:0
|
作者
Chattopadhyay, Arghya [1 ]
Mandal, Taniya [2 ]
Marrani, Alessio [3 ]
机构
[1] Univ Mons, Serv Phys Univers Champs & Gravitat, 20 Pl Parc, B-7000 Mons, Belgium
[2] Homi Bhabha Natl Inst, Natl Inst Sci Educ & Res, Sch Phys Sci, OCC, Bhubaneswar 752050, India
[3] Univ Murcia, Inst Fis Teor, Dept Fis, Campus Espinardo, E-30100 Murcia, Spain
来源
关键词
Black Holes; Black Holes in String Theory; Scale and Conformal Symmetries; SYMMETRIES; HORIZON;
D O I
10.1007/JHEP11(2024)057
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Rotational Freudenthal duality (RFD) relates two extremal Kerr-Newman (KN) black holes (BHs) with different angular momenta and electric-magnetic charges, but with the same Bekenstein-Hawking entropy. Through the Kerr/CFT correspondence (and its KN extension), a four-dimensional, asymptotically flat extremal KN BH is endowed with a dual thermal, two-dimensional conformal field theory (CFT) such that the Cardy entropy of the CFT is the same as the Bekenstein-Hawking entropy of the KN BH itself. Using this connection, we study the effect of the RFD on the thermal CFT dual to the KN extremal (or doubly-extremal) BH. We find that the RFD maps two different thermal, two-dimensional CFTs with different temperatures and central charges, but with the same asymptotic density of states, thereby matching the Cardy entropy. We also discuss the action of the RFD on doubly-extremal rotating BHs, finding a spurious branch in the non-rotating limit, and determining that for this class of BH solutions the image of the RFD necessarily over-rotates.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] CONFORMAL FIELD-THEORY
    GAWEDZKI, K
    ASTERISQUE, 1989, (177-78) : 95 - 126
  • [32] Nonrational Conformal Field Theory
    Teschner, Joerg
    NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 697 - 739
  • [33] Axiomatic conformal field theory
    Gaberdiel, MR
    Goddard, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (03) : 549 - 594
  • [34] Coends in conformal field theory
    Fuchs, Juergen
    Schweigert, Christoph
    LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS, AND RELATED TOPICS, 2017, 695 : 65 - 81
  • [35] Decoherence in conformal field theory
    del Campo, Adolfo
    Takayanagi, Tadashi
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [36] Irrational conformal field theory
    Halpern, MB
    Kiritsis, E
    Obers, NA
    Clubok, K
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 265 (1-2): : 2 - 138
  • [37] Warped conformal field theory
    Detournay, Stephane
    Hartman, Thomas
    Hofman, Diego M.
    PHYSICAL REVIEW D, 2012, 86 (12):
  • [38] On conformal field theory of SLE(κ, ρ)
    Kytola, Kalle
    JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (06) : 1169 - 1181
  • [39] Defects in conformal field theory
    Marco Billò
    Vasco Gonçalves
    Edoardo Lauria
    Marco Meineri
    Journal of High Energy Physics, 2016
  • [40] Conformal field theory and graphs
    Petkova, VB
    Zuber, JB
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 627 - 632