Distributed Clustering in Wireless Sensor Network with Kernel Based Weighted Fuzzy C-Means Algorithm

被引:0
|
作者
Anita Panwar [1 ]
Satyasai Jagannath Nanda [1 ]
机构
[1] Malaviya National Institute of Technology,Department of Electronics and Communication Engineering
关键词
Fuzzy C-means; Distributed clustering; Gaussian kernel; Feature weight; Cluster weight;
D O I
10.1007/s42979-024-03446-4
中图分类号
学科分类号
摘要
The main limitation of the Fuzzy C-Means technique is its sensitivity to noise and outliers, which limits its use in adverse clustering scenarios. The new framework reported in this manuscript is based on kernel-induced distance matric using the Gaussian Radial Basis Function (GRBF), and the proposed algorithm is named as Distributed Kernel-based Weighted Fuzzy C-Means (DKWFCM) algorithm. In wireless sensor networks (WSN), Distributed approaches perform the clustering task across network nodes, mitigating privacy risks, reducing communication overhead, and adapting to network dynamics. Feature-weight and cluster-weight learning are incorporated for more effective cluster analysis in distributed environments. Additionally, DKWFCM leverages diffusion-based learning to enable information processing across multiple wireless sensor nodes. The proposed algorithm DKWFCM performance is evaluated on synthetic and real-world datasets distributed over six wireless sensor nodes. Five datasets for validation which consists of two Synthetic datasets (Circle_3_2, Mixed_3_2) and three real-world datasets (the Cook Agricultural land dataset, Thames River water quality dataset, and Canada Weather station dataset). Performance is assessed using the Silhouette Index (SI) and Dunn Index (DI) as a validation measures. Simulation results demonstrated the superior performance of DKWFCM over traditional FCM algorithms such as Distributed FCM (DFCM) algorithm and Distributed Weighted FCM (DWFCM). The superiority is evident in various aspects, such as visual clusters obtained at each node, SI value, DI value plots at the sensor nodes, and average convergence plots. The minimum value of average Euclidean deviation of proposed DKWFCM optimization algorithm is reduced by 27.73%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 31.86%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 10.11%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 19.40%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} compared to DFCM and DWFCM respectively for both synthetic datasets. Similarly, it is reduced by 99.12%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 97.13%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 54.29%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 5.69%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 91.67%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 30.41%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} respectively for the three real-world datasets. These findings suggest that the proposed algorithm DKWFCM improves cluster analysis in distributed processing environments of WSNs.
引用
收藏
相关论文
共 50 条
  • [21] Spectral partitioning and fuzzy C-means based clustering algorithm for big data wireless sensor networks
    Wang, Quyuan
    Guo, Songtao
    Hu, Jianji
    Yang, Yuanyuan
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2018,
  • [22] Spectral partitioning and fuzzy C-means based clustering algorithm for big data wireless sensor networks
    Quyuan Wang
    Songtao Guo
    Jianji Hu
    Yuanyuan Yang
    EURASIP Journal on Wireless Communications and Networking, 2018
  • [23] MapReduce-based Fuzzy C-means Algorithm for Distributed Document Clustering
    Sardar T.H.
    Ansari Z.
    Journal of The Institution of Engineers (India): Series B, 2022, 103 (01) : 131 - 142
  • [24] A Novel Evolutionary Kernel Intuitionistic Fuzzy C-means Clustering Algorithm
    Lin, Kuo-Ping
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1074 - 1087
  • [25] Weighted fuzzy time series forecasting based on improved fuzzy C-means clustering algorithm
    Sang, Xiaoshuang
    Zhao, Qinghua
    Lu, Hong
    Lu, Jianfeng
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 80 - 84
  • [26] Kernel-based Algorithm with Weighted Spatial Information Intuitionistic Fuzzy C-means
    Zhang J.
    Li Z.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2017, 39 (09): : 2162 - 2168
  • [27] Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function
    Zhang, Yaling
    Han, Jin
    PLOS ONE, 2021, 16 (03):
  • [28] Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm
    Dao-Qiang Zhang
    Song-Can Chen
    Neural Processing Letters, 2003, 18 : 155 - 162
  • [29] Clustering incomplete data using kernel-based fuzzy C-means algorithm
    Zhang, DQ
    Chen, SC
    NEURAL PROCESSING LETTERS, 2003, 18 (03) : 155 - 162
  • [30] Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation
    Zhao Zaixin
    Cheng Lizhi
    Cheng Guangquan
    IET IMAGE PROCESSING, 2014, 8 (03) : 150 - 161