Distributed Clustering in Wireless Sensor Network with Kernel Based Weighted Fuzzy C-Means Algorithm

被引:0
|
作者
Anita Panwar [1 ]
Satyasai Jagannath Nanda [1 ]
机构
[1] Malaviya National Institute of Technology,Department of Electronics and Communication Engineering
关键词
Fuzzy C-means; Distributed clustering; Gaussian kernel; Feature weight; Cluster weight;
D O I
10.1007/s42979-024-03446-4
中图分类号
学科分类号
摘要
The main limitation of the Fuzzy C-Means technique is its sensitivity to noise and outliers, which limits its use in adverse clustering scenarios. The new framework reported in this manuscript is based on kernel-induced distance matric using the Gaussian Radial Basis Function (GRBF), and the proposed algorithm is named as Distributed Kernel-based Weighted Fuzzy C-Means (DKWFCM) algorithm. In wireless sensor networks (WSN), Distributed approaches perform the clustering task across network nodes, mitigating privacy risks, reducing communication overhead, and adapting to network dynamics. Feature-weight and cluster-weight learning are incorporated for more effective cluster analysis in distributed environments. Additionally, DKWFCM leverages diffusion-based learning to enable information processing across multiple wireless sensor nodes. The proposed algorithm DKWFCM performance is evaluated on synthetic and real-world datasets distributed over six wireless sensor nodes. Five datasets for validation which consists of two Synthetic datasets (Circle_3_2, Mixed_3_2) and three real-world datasets (the Cook Agricultural land dataset, Thames River water quality dataset, and Canada Weather station dataset). Performance is assessed using the Silhouette Index (SI) and Dunn Index (DI) as a validation measures. Simulation results demonstrated the superior performance of DKWFCM over traditional FCM algorithms such as Distributed FCM (DFCM) algorithm and Distributed Weighted FCM (DWFCM). The superiority is evident in various aspects, such as visual clusters obtained at each node, SI value, DI value plots at the sensor nodes, and average convergence plots. The minimum value of average Euclidean deviation of proposed DKWFCM optimization algorithm is reduced by 27.73%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 31.86%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 10.11%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 19.40%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} compared to DFCM and DWFCM respectively for both synthetic datasets. Similarly, it is reduced by 99.12%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 97.13%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 54.29%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 5.69%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 91.67%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}; 30.41%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} respectively for the three real-world datasets. These findings suggest that the proposed algorithm DKWFCM improves cluster analysis in distributed processing environments of WSNs.
引用
收藏
相关论文
共 50 条
  • [1] Energy Efficient Algorithm for Wireless Sensor Network using Fuzzy C-Means Clustering
    Jain, Abhilasha
    Goel, Ashok Kumar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (04) : 474 - 481
  • [2] Fuzzy C-Means clustering algorithm based on kernel method
    Wu, ZD
    Xie, WX
    Yu, JP
    ICCIMA 2003: FIFTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, PROCEEDINGS, 2003, : 49 - 54
  • [3] A Kernel Fuzzy C-means Clustering Algorithm Based on Firefly Algorithm
    Cheng, Chunying
    Bao, Chunhua
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 463 - 468
  • [4] Generalised kernel weighted fuzzy C-means clustering algorithm with local information
    Memon, Kashif Hussain
    Lee, Dong-Ho
    FUZZY SETS AND SYSTEMS, 2018, 340 : 91 - 108
  • [5] Kernel-Based Fuzzy C-Means Clustering Algorithm for RBF Network Initialization
    Czarnowski, Ireneusz
    Jedrzejowicz, Piotr
    INTELLIGENT DECISION TECHNOLOGIES 2016, PT I, 2016, 56 : 337 - 347
  • [6] Spectral Partitioning and Fuzzy C-Means Based Clustering Algorithm for Wireless Sensor Networks
    Hu, Jianji
    Guo, Songtao
    Liu, Defang
    Yang, Yuanyuan
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2017, 2017, 10251 : 161 - 174
  • [7] Life Time Enhancement of Wireless Sensor Network Using Fuzzy C-Means Clustering Algorithm
    Kumar, Pramod
    Chaturvedi, Ashvini
    2014 INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2014,
  • [8] Improved Performance Using Fuzzy Possibilistic C-Means Clustering Algorithm in Wireless Sensor Network
    Kushwaha, Shweta
    Jadon, Kuldeep Singh
    2020 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT 2020), 2020, : 134 - 139
  • [9] A Weighted Fuzzy c-Means Clustering Algorithm for Incomplete Big Sensor Data
    Li, Peng
    Chen, Zhikui
    Hu, Yueming
    Leng, Yonglin
    Li, Qiucen
    WIRELESS SENSOR NETWORKS (CWSN 2017), 2018, 812 : 55 - 63
  • [10] Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm
    Ding, Yi
    Fu, Xian
    NEUROCOMPUTING, 2016, 188 : 233 - 238