SMR-guided molecular subtyping and machine learning model reveals novel prognostic biomarkers and therapeutic targets in non-small cell lung adenocarcinoma

被引:0
|
作者
Wang, Baozhen [1 ,2 ,4 ]
Yin, Yichen [1 ,2 ,4 ]
Wang, Anqi [2 ,3 ]
Liu, Weidi [1 ,2 ,4 ]
Chen, Jing [2 ,3 ]
Li, Tao [4 ]
机构
[1] Ningxia Med Univ, Sch Clin Med, 1160 Shengli St, Yinchuan 750004, Ningxia, Peoples R China
[2] Ningxia Med Univ, Key Lab Fertil Preservat & Maintenance, Minist Educ, 1160 Shengli St, Yinchuan 750004, Ningxia, Peoples R China
[3] Ningxia Med Univ, Sch Basic Med Sci, 1160 Shengli St, Yinchuan 750004, Ningxia, Peoples R China
[4] Ningxia Med Univ, Dept Surg Oncol 2, Gen Hosp, 804 Shengli St, Yinchuan 750004, Ningxia, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Non-small cell lung adenocarcinoma; LUAD; Mendelian randomization; Molecular subtypes; Machine learning prognostic model; Multi-omics integrative analysis; CANCER; RESISTANCE; MUTATIONS; HALLMARKS; PATTERNS;
D O I
10.1038/s41598-025-85471-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-small cell lung adenocarcinoma (LUAD) is a markedly heterogeneous disease, with its underlying molecular mechanisms and prognosis prediction presenting ongoing challenges. In this study, we integrated data from multiple public datasets, including TCGA, GSE31210, and GSE13213, encompassing a total of 867 tumor samples. By employing Mendelian randomization (MR) analysis, machine learning techniques, and comprehensive bioinformatics approaches, we conducted an in-depth investigation into the molecular characteristics, prognostic markers, and potential therapeutic targets of LUAD. Our analysis identified 321 genes significantly associated with LUAD, with CENP-A, MCM7, and DLGAP5 emerging as highly connected nodes in network analyses. By performing correlation analysis and Cox regression analysis, we identified 26 prognostic genes and classified LUAD samples into two molecular subtypes with significantly distinct survival outcomes. The Random Survival Forest (RSF) model exhibited robust prognostic predictive capabilities across multiple independent cohorts (AUC > 0.75). Beyond merely predicting patient outcomes, this model also captures key features of the tumor immune microenvironment and potential therapeutic responses. Functional enrichment analysis revealed the complex interplay of cell cycle regulation, DNA repair, immune response, and metabolic reprogramming in the progression of LUAD. Furthermore, we observed a strong correlation between risk scores and the expression of specific cytokines, such as CCL17, CCR2, and CCL20, suggesting novel avenues for developing cytokine network-based therapeutic strategies. This study offers fresh insights into the molecular subtyping, prognostic prediction, and personalized therapeutic decision-making in LUAD, laying a critical foundation for future clinical applications and targeted therapy research.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] HSP27-A novel prognostic marker and therapeutic target for non-small cell lung cancer
    Seiwert, Tanguy Y.
    Bracht, Lynn
    Ferguson, Ben
    Janamanchi, Varalakshmi
    Ramasamy, Jagadeeswaran
    Husain, Aliya
    Padilla, Mary
    Qiang, Li
    Tan, Dongfeng
    Papathanassiu, Adonia
    Salgia, Ravi
    CANCER RESEARCH, 2006, 66 (08)
  • [32] Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas
    van IJzendoorn, David G. P.
    Szuhai, Karoly
    Briaire-de Bruijn, Inge H.
    Kostine, Marie
    Kuijjer, Marieke L.
    Bovee, Judith V. M. G.
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (02)
  • [33] Novel machine learning algorithm to predict response to immunotherapy in patients with small cell and non-small cell lung cancer
    Sharma, Lakshya
    Choi, Sunyoung
    Balaji, Vaishnavi
    Joshi, Adwait
    Mporas, Iosif
    Shi, Jiaqi
    Zhao, Yi
    Tailor, Vipula
    Shah, Riyaz N. H.
    Waters, Justin S.
    Adeleke, Sola Michael
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [34] Integrative genomic microarray analyses reveal novel molecular targets in non-small cell lung carcinoma
    Craddock, K. J.
    Strumpf, D.
    Xie, W.
    Buys, T. P. H.
    Chi, B.
    Lam, W. L.
    Jurisica, I.
    Tsao, M. S.
    LABORATORY INVESTIGATION, 2008, 88 : 339A - 339A
  • [35] Integrative genomic microarray analyses reveal novel molecular targets in non-small cell lung carcinoma
    Craddock, K. J.
    Strumpf, D.
    Xie, W.
    Buys, T. P. H.
    Chi, B.
    Lam, W. L.
    Jurisica, I.
    Tsao, M. S.
    MODERN PATHOLOGY, 2008, 21 : 339A - 339A
  • [36] OTHER NOVEL MOLECULAR TARGETS IN NON-SMALL CELL LUNG CANCER: IT'S NOT ALL ABOUT EGFR
    Cruikshank, Ross
    Hughes, Brett
    CANCER FORUM, 2013, 37 (02) : 170 - 174
  • [37] Integrated analysis reveals the microenvironment of non-small cell lung cancer and a macrophage-related prognostic model
    Xie, Shenglong
    Huang, Guixiang
    Qian, Weiwei
    Wang, Xuyang
    Zhang, Hanlu
    Li, Zhiyang
    Liu, Yu
    Wang, Yun
    Yu, Hongtao
    TRANSLATIONAL LUNG CANCER RESEARCH, 2023, 12 (02) : 277 - +
  • [38] Characterizing the Metabolic and Immune Landscape of Non-small Cell Lung Cancer Reveals Prognostic Biomarkers Through Omics Data Integration
    Wang, Fengjiao
    Zhang, Yuanfu
    Hao, Yangyang
    Li, Xuexin
    Qi, Yue
    Xin, Mengyu
    Xiao, Qifan
    Wang, Peng
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [39] Integrated Analysis of Transcriptomic and Genomic Data Reveals Blood Biomarkers With Diagnostic and Prognostic Potential in Non-small Cell Lung Cancer
    Kaya, Ibrahim H.
    Al-Harazi, Olfat
    Kaya, Mustafa T.
    Colak, Dilek
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [40] Lung Tumorspheres Characterization Reveals Cancer Stem-Like Cells Potential Targets and Prognostic Markers in Non-Small Cell Lung Cancer
    Herreros-Pomares, A.
    Jantus-Lewintre, E.
    Calabuig-Farinas, S.
    De-Maya-Girones, J. D.
    Lucas, R.
    Blasco, A.
    Guijarro, R.
    Martorell, M.
    Escorihuela, E.
    Chiara, M. D.
    Durendez-Saez, E.
    Gandia, C.
    Sirera, R.
    Farras, R.
    Camps, C.
    JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (10) : S261 - S261