Cutting-Edge Deep Learning Methods for Image-Based Object Detection in Autonomous Driving: In-Depth Survey

被引:0
|
作者
Saeedizadeh, Narges [1 ]
Jalali, Seyed Mohammad Jafar [2 ]
Khan, Burhan [1 ]
Mohamed, Shady [1 ]
机构
[1] Deakin Univ, Inst Intelligent Syst Res & Innovat, Waurn Ponds, Vic, Australia
[2] Edith Cowan Univ, Sch Sci, Joondalup, WA, Australia
关键词
autonomous driving; convolutional neural network; deep learning; object detection; pedestrian detection; vehicle detection; VEHICLE DETECTION; PEDESTRIAN DETECTION; TRACKING; BENCHMARK; NETWORKS; VISION; REGION;
D O I
10.1111/exsy.70020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection is a critical aspect of computer vision (CV) applications, especially within autonomous driving systems (AVs), where it is fundamental to ensuring safety and reducing traffic accidents. Recent advancements in computational resources have enabled the widespread adoption of Deep Learning (DL) techniques, significantly enhancing the efficiency and accuracy of object detection tasks. However, the technology for autonomous driving has yet to reach a level of maturity that guarantees consistent performance, reliability, and safety, with several challenges remaining unresolved. This study specifically focuses on 2D image-based object detection methods, which offer several advantages over other modalities, such as cost-effectiveness and the ability to capture visual features like colour and texture that are not detectable by LiDAR. We provide a comprehensive survey of DL-based strategies for detecting vehicles and pedestrians using 2D images, analysing both one-stage and two-stage detection frameworks. Additionally, we review the most commonly used publicly available datasets in autonomous driving research and highlight their relevance to 2D detection tasks. The paper concludes by discussing the current challenges in this domain and proposing potential future directions, aiming to bridge the gap between the capabilities of 2D image-based models and the requirements of real-world autonomous driving applications. Comparative tables are included to facilitate a clear understanding of the different approaches and datasets.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] A survey of deep learning methods and software tools for image classification and object detection
    Druzhkov P.N.
    Kustikova V.D.
    Pattern Recognition and Image Analysis, 2016, 26 (1) : 9 - 15
  • [22] Deep Learning Model for Image-Based Plant Diseases Detection on Edge Devices
    Chaitra, S.
    Ghana, Satyajit
    Singh, Shikhar
    Poddar, Prachi
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [23] A cutting-edge video anomaly detection method using image quality assessment and attention mechanism-based deep learning
    Cui, Chunying
    Liu, Linlin
    Qiao, Rui
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 108 : 476 - 485
  • [24] A Deep Learning-Based Hybrid Framework for Object Detection and Recognition in Autonomous Driving
    Li, Yanfen
    Wang, Hanxiang
    Dang, L. Minh
    Nguyen, Tan N.
    Han, Dongil
    Lee, Ahyun
    Jang, Insung
    Moon, Hyeonjoon
    IEEE ACCESS, 2020, 8 : 194228 - 194239
  • [25] Deep Learning-based Road Object Detection for Collision Avoidance in Autonomous Driving
    Sharma, Teena
    Chehri, Abdellah
    Fofana, Issouf
    Debaque, Benoit
    Duclos, Nicolas
    Khare, Siddhartha
    2024 IEEE WORLD FORUM ON PUBLIC SAFETY TECHNOLOGY, WFPST 2024, 2024, : 126 - 131
  • [26] Depth edge detection by image-based smoothing and morphological operations
    Hasan, Syed Mohammad Abid
    Ko, Kwanghee
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2016, 3 (03) : 191 - 197
  • [27] Online Depth Image-Based Object Tracking with Sparse Representation and Object Detection
    Zheng, Wei-Long
    Shen, Shan-Chun
    Lu, Bao-Liang
    NEURAL PROCESSING LETTERS, 2017, 45 (03) : 745 - 758
  • [28] Online Depth Image-Based Object Tracking with Sparse Representation and Object Detection
    Wei-Long Zheng
    Shan-Chun Shen
    Bao-Liang Lu
    Neural Processing Letters, 2017, 45 : 745 - 758
  • [29] Survey of Object Detection Based on Deep Learning
    Luo H.-L.
    Chen H.-K.
    1600, Chinese Institute of Electronics (48): : 1230 - 1239
  • [30] Survey of Deep Learning Based Object Detection
    Wang Hechun
    Zheng Xiaohong
    PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON BIG DATA TECHNOLOGIES (ICBDT 2019), 2019, : 149 - 153