Securing the collective intelligence: a comprehensive review of federated learning security attacks and defensive strategies

被引:0
|
作者
Kaushal, Vishal [1 ]
Sharma, Sangeeta [1 ]
机构
[1] Natl Inst Technol, Comp Sci & Engn Dept, Hamirpur 177005, Himachal Prades, India
关键词
Centralized learning; Federated learning; Threats; Defense; Aggregation algorithm; POISONING ATTACKS; PRIVACY; CHALLENGES;
D O I
10.1007/s10115-025-02339-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning holds significant potential as a collaborative machine learning technique, allowing multiple entities to work together on a collective model without the need to exchange data. However, due to the distribution of data across multiple devices, federated learning becomes susceptible to a range of attacks. This paper provides an extensive examination of the different forms of attacks that can target federated learning systems. The attacks discussed include data poisoning attacks, model poisoning attacks, backdoor attacks, Byzantine attacks, membership inference attacks, model inversion attacks, etc. Each attack is examined in detail, with examples from the literature provided. Additionally, potential countermeasures to defend against these attacks are explored. The objective of this review is to provide an in-depth survey of the current landscape in federated learning attacks and corresponding defense mechanisms.
引用
收藏
页码:3099 / 3137
页数:39
相关论文
共 50 条
  • [11] A comprehensive survey on client selection strategies in federated learning
    Li, Jian
    Chen, Tongbao
    Teng, Shaohua
    COMPUTER NETWORKS, 2024, 251
  • [12] Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey
    Issa, Wael
    Moustafa, Nour
    Turnbull, Benjamin
    Sohrabi, Nasrin
    Tari, Zahir
    ACM COMPUTING SURVEYS, 2023, 55 (09)
  • [13] Review of Research on Information Security in Federated Learning
    Duan, Xinru
    Chen, Guirong
    Chen, Aiwang
    Chen, Chen
    Ji, Weifeng
    Computer Engineering and Applications, 2024, 60 (03) : 61 - 77
  • [14] Differential Privacy Federated Learning: A Comprehensive Review
    Shan, Fangfang
    Mao, Shiqi
    Lu, Yanlong
    Li, Shuaifeng
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 220 - 230
  • [15] Evaluating Security and Robustness for Split Federated Learning Against Poisoning Attacks
    Wu, Xiaodong
    Yuan, Henry
    Li, Xiangman
    Ni, Jianbing
    Lu, Rongxing
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 175 - 190
  • [16] Federated-Learning-Based Anomaly Detection for IoT Security Attacks
    Mothukuri, Viraaji
    Khare, Prachi
    Parizi, Reza M.
    Pouriyeh, Seyedamin
    Dehghantanha, Ali
    Srivastava, Gautam
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (04) : 2545 - 2554
  • [17] Federated Learning in Smart Healthcare: A Comprehensive Review on Privacy, Security, and Predictive Analytics with IoT Integration
    Abbas, Syed Raza
    Abbas, Zeeshan
    Zahir, Arifa
    Lee, Seung Won
    HEALTHCARE, 2024, 12 (24)
  • [18] A Review of Deep Learning Security and Privacy Defensive Techniques
    Tariq, Muhammad Imran
    Memon, Nisar Ahmed
    Ahmed, Shakeel
    Tayyaba, Shahzadi
    Mushtaq, Muhammad Tahir
    Mian, Natash Ali
    Imran, Muhammad
    Ashraf, Muhammad W.
    MOBILE INFORMATION SYSTEMS, 2020, 2020
  • [19] Securing NextG Systems against Poisoning Attacks on Federated Learning: A Game-Theoretic Solution
    Sagduyu, Yalin E.
    Erpek, Tugba
    Shi, Yi
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,
  • [20] Advancements in securing federated learning with IDS: a comprehensive review of neural networks and feature engineering techniques for malicious client detection
    Latif, Naila
    Ma, Wenping
    Ahmad, Hafiz Bilal
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (03)