Stability of Serrin-Type Problem for Hessian Equations and Hessian Quotient EquationsStability of Serrin-Type Problem for Hessian Equations...Y. Sun et al.

被引:0
|
作者
Yifan Sun [1 ]
Feiyao Ma [1 ]
Weifeng Wo [1 ]
机构
[1] Ningbo University,School of Mathematics and Statistics
关键词
Overdetermined problems; Stability; Hessian equations; Hessian quotient equations; Pohozaev type identity; 35J60; 35N25; 35B35;
D O I
10.1007/s40840-024-01783-4
中图分类号
学科分类号
摘要
In this paper, we investigate the stability of radial symmetry in the solutions to overdetermined problems for Hessian equations and Hessian quotient equations. We prove that if u is a solution to a Hessian equation or Hessian quotient equation in a smooth domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, with u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u = 0$$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} and |Du| nearly 1 on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, then the domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is close to a union of several disjoint unit spheres, and u is approximates to radially symmetric functions in these spheres. Moreover, when Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is connected, we show that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is close to a unit ball.
引用
收藏
相关论文
共 50 条
  • [31] The Dirichlet Problem for a Class of Hessian Quotient Equations on Riemannian Manifolds
    Chen, Xiaojuan
    Tu, Qiang
    Xiang, Ni
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (12) : 10013 - 10036
  • [32] Serrin-type blow-up criteria for 3D Boussinesq equations
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    APPLICABLE ANALYSIS, 2010, 89 (10) : 1603 - 1613
  • [33] A SERRIN-TYPE REGULARITY CRITERION FOR THE NAVIER-STOKES EQUATIONS VIA ONE VELOCITY COMPONENT
    Zhang, Zujin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 117 - 124
  • [34] Interior curvature bounds for a type of mixed Hessian quotient equations?
    Sheng, Weimin
    Xia, Shucan
    MATHEMATICS IN ENGINEERING, 2022, 5 (02): : 1 - 27
  • [35] The a priori estimates for a class of general Hessian quotient type equations
    Ni Xiang
    Yuni Xiong
    Jingyi Yao
    Acta Mathematica Scientia, 2025, 45 (3) : 867 - 884
  • [36] Uniqueness of Solutions to a Class of Mixed Hessian Quotient Type Equations
    Chuanqiang Chen
    Lu Xu
    The Journal of Geometric Analysis, 2023, 33
  • [37] Uniqueness of Solutions to a Class of Mixed Hessian Quotient Type Equations
    Chen, Chuanqiang
    Xu, Lu
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [38] A Refinement of the Local Serrin-Type Regularity Criterion for a Suitable Weak Solution to the Navier–Stokes Equations
    Jiří Neustupa
    Archive for Rational Mechanics and Analysis, 2014, 214 : 525 - 544
  • [39] Curvature estimates for a class of Hessian quotient type curvature equations
    Zhou, Jundong
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [40] A PRIORI ESTIMATES FOR THE OBSTACLE PROBLEM OF HESSIAN TYPE EQUATIONS ON RIEMANNIAN MANIFOLDS
    Dong, Weisong
    Wang, Tingting
    Bao, Gejun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1769 - 1780