Stability of Serrin-Type Problem for Hessian Equations and Hessian Quotient EquationsStability of Serrin-Type Problem for Hessian Equations...Y. Sun et al.

被引:0
|
作者
Yifan Sun [1 ]
Feiyao Ma [1 ]
Weifeng Wo [1 ]
机构
[1] Ningbo University,School of Mathematics and Statistics
关键词
Overdetermined problems; Stability; Hessian equations; Hessian quotient equations; Pohozaev type identity; 35J60; 35N25; 35B35;
D O I
10.1007/s40840-024-01783-4
中图分类号
学科分类号
摘要
In this paper, we investigate the stability of radial symmetry in the solutions to overdetermined problems for Hessian equations and Hessian quotient equations. We prove that if u is a solution to a Hessian equation or Hessian quotient equation in a smooth domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, with u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u = 0$$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} and |Du| nearly 1 on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, then the domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is close to a union of several disjoint unit spheres, and u is approximates to radially symmetric functions in these spheres. Moreover, when Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is connected, we show that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is close to a unit ball.
引用
收藏
相关论文
共 50 条
  • [1] Serrin-Type Overdetermined Problems for Hessian Quotient Equations and Hessian Quotient Curvature Equations
    Zhenghuan Gao
    Xiaohan Jia
    Dekai Zhang
    The Journal of Geometric Analysis, 2023, 33
  • [2] Serrin-Type Overdetermined Problems for Hessian Quotient Equations and Hessian Quotient Curvature Equations
    Gao, Zhenghuan
    Jia, Xiaohan
    Zhang, Dekai
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
  • [3] Serrin-Type Overdetermined Problem in Hn
    Gao, Zhenghuan
    Jia, Xiaohan
    Yan, Jin
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (01): : 102 - 118
  • [4] A Serrin-type problem with partial knowledge of the domain
    Dipierro, Serena
    Poggesi, Giorgio
    Valdinoci, Enrico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 208 (208)
  • [5] Optimal quantitative stability for a Serrin-type problem in convex cones
    Pacella, Filomena
    Poggesi, Giorgio
    Roncoroni, Alberto
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (04)
  • [6] The Neumann problem of Hessian quotient equations
    Chen, Chuanqiang
    Zhang, Dekai
    BULLETIN OF MATHEMATICAL SCIENCES, 2021, 11 (01)
  • [7] Dirichlet problem for degenerate Hessian quotient type curvature equationsDirichlet problem for degenerate Hessian...X. Chen et al.
    Xiaojuan Chen
    Qiang Tu
    Ni Xiang
    Calculus of Variations and Partial Differential Equations, 2025, 64 (3)
  • [8] Quantitative stability estimates for a two-phase Serrin-type overdetermined problem
    Cavallina, Lorenzo
    Poggesi, Giorgio
    Yachimura, Toshiaki
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
  • [9] The Lp Minkowski type problem for a class of mixed Hessian quotient equations
    Chen, Chuanqiang
    Xu, Lu
    ADVANCES IN MATHEMATICS, 2022, 411
  • [10] On a Serrin-Type Regularity Criterion for the Navier–Stokes Equations in Terms of the Pressure
    Michael Struwe
    Journal of Mathematical Fluid Mechanics, 2007, 9 : 235 - 242