A Modified Swin-UNet Model for Coastal Wetland Classification Using Multi-Temporal Sentinel-2 Images

被引:0
|
作者
Binyu Wang [1 ]
Yuanheng Sun [1 ]
Xueyuan Zhu [1 ]
Senlin Teng [1 ]
Ying Li [1 ]
机构
[1] Navigation College,Environmental Information Institute
[2] Dalian Maritime University,undefined
关键词
Wetland classification; Deep learning; Multi-temporal; Swin-UNet; Sentinel-2;
D O I
10.1007/s12237-025-01498-0
中图分类号
学科分类号
摘要
Coastal wetlands are of great importance in protecting biodiversity, mitigating climate change, and providing natural resources. Using deep learning methods for the classification and mapping of coastal wetlands with optical remote sensing data can effectively monitor changes in wetlands, playing a crucial role in their protection. However, most current wetland classification methods focus on single-temporal data, with relatively few studies addressing multi-temporal data. Therefore, for the wetland classification task in the Bohai Rim region of China, an improved Swin-MTNet model based on the state-of-the-art deep learning model Swin-UNet is proposed in this study to better capture temporal feature variations with multi-temporal Sentinel-2 imagery. The Swin-MTNet is compared with Swin-UNet and DeepLabV3+, and the results indicate that Swin-MTNet achieves overall accuracy improvements of 5.12% and 2.85% and Kappa coefficient improvements of 6.85% and 3.86% over Swin-UNet and DeepLabV3+, respectively, when utilizing multi-temporal data. The classification improvement for Spartina alterniflora is the most significant, with F1 scores increasing by 0.45 and 0.47 compared to Swin-UNet and DeepLabV3+, respectively. These results demonstrate that the proposed Swin-MTNet model can effectively leverage the temporal features of multi-temporal data, significantly improving the accuracy of coastal wetland classification.
引用
收藏
相关论文
共 50 条
  • [21] Quantification of forest extent in Germany by combining multi-temporal stacks of Sentinel-1 and Sentinel-2 images
    Suresh, Gopika
    Hovenbitzer, Michael
    SIXTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2018), 2018, 10773
  • [22] Research on remote sensing classification of fruit trees based on Sentinel-2 multi-temporal imageries
    Xin-Xing Zhou
    Yang-Yang Li
    Yuan-Kai Luo
    Ya-Wei Sun
    Yi-Jun Su
    Chang-Wei Tan
    Ya-Ju Liu
    Scientific Reports, 12
  • [23] How much does multi-temporal Sentinel-2 data improve crop type classification?
    Vuolo, Francesco
    Neuwirth, Martin
    Immitzer, Markus
    Atzberger, Clement
    Ng, Wai-Tim
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 72 : 122 - 130
  • [24] Research on remote sensing classification of fruit trees based on Sentinel-2 multi-temporal imageries
    Zhou, Xin-Xing
    Li, Yang-Yang
    Luo, Yuan-Kai
    Sun, Ya-Wei
    Su, Yi-Jun
    Tan, Chang-Wei
    Liu, Ya-Ju
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [25] Deep Seasonal Network for Remote Sensing Imagery Classification of Multi-Temporal Sentinel-2 Data
    Cheng, Keli
    Scott, Grant J.
    REMOTE SENSING, 2023, 15 (19)
  • [26] WetNet: A Spatial-Temporal Ensemble Deep Learning Model for Wetland Classification Using Sentinel-1 and Sentinel-2
    Hosseiny, Benyamin
    Mahdianpari, Masoud
    Brisco, Brian
    Mohammadimanesh, Fariba
    Salehi, Bahram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] Fine Classification of County Crops Based on Multi-temporal Images of Sentinel-2A
    Wu J.
    Lü Y.
    Li C.
    Li Q.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (09): : 194 - 200
  • [28] Spatio-Temporal Classification Framework for Mapping Woody Vegetation from Multi-Temporal Sentinel-2 Imagery
    Kovacevic, Jovan
    Cvijetinovic, Zeljko
    Lakusic, Dmitar
    Kuzmanovic, Nevena
    Sinzar-Sekulic, Jasmina
    Mitrovic, Momir
    Stancic, Nikola
    Brodic, Nenad
    Mihajlovic, Dragan
    REMOTE SENSING, 2020, 12 (17) : 1 - 23
  • [29] Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images
    Liu, Meiling
    Wang, Tiejun
    Skidmore, Andrew K.
    Liu, Xiangnan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 637 : 18 - 29
  • [30] Assessing the spatial variation of cropping intensity using multi-temporal Sentinel-2 data by rule-based classification
    Ghosh, Argha
    Nanda, Manoj K.
    Sarkar, Debolina
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2022, 24 (09) : 10829 - 10851