Singularities of divisors of small degrees on abelian varieties

被引:0
|
作者
Jiang, Zhi [1 ]
Liu, Hui [1 ]
机构
[1] Shanghai Ctr Math Sci, Shanghai, Peoples R China
基金
上海市自然科学基金;
关键词
SEVERI INEQUALITY; THEOREMS;
D O I
10.1007/s00209-024-03661-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Pareschi showed that an ample divisor of degree d on a simple abelian variety of dimension g has mild singularities when d<g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d<g$$\end{document}. We extend his result to general polarized abelian varieties. We also show that ample divisors of degree 3 (resp. 4) on an abelian variety of dimension >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 3$$\end{document} (resp. >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 4$$\end{document}) have mild singularities, which extends Debarre and Hacon's previous work on polarizations of degree 2.
引用
收藏
页数:21
相关论文
共 50 条