YOLO-STOD: an industrial conveyor belt tear detection model based on Yolov5 algorithm

被引:1
|
作者
Liu, Wei [1 ]
Tao, Qing [1 ]
Wang, Nini [2 ]
Xiao, Wendong [1 ]
Pan, Cen [1 ]
机构
[1] Xinjiang Univ, Sch Mech Engn, Urumqi 830000, Peoples R China
[2] Xinjiang Univ, Coll Elect Engn, Urumqi 830000, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
BELT tearing; Yolo algorithm; Real-time detection; Deep learning; Small object detection; DEEP LEARNING APPROACH;
D O I
10.1038/s41598-024-83619-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Real-time detection of conveyor belt tearing is of great significance to ensure mining in the coal industry. The longitudinal tear damage problem of conveyor belts has the characteristics of multi-scale, abundant small targets, and complex interference sources. Therefore, in order to improve the performance of small-size tear damage detection algorithms under complex interference, a visual detection method YOLO-STOD based on deep learning was proposed. Firstly, a multi-case conveyor belt tear dataset is developed for complex interference and small-size detection. Second, the detection method YOLO-STOD is designed, which utilizes the BotNet attention mechanism to extract multi-dimensional tearing features, enhancing the model's feature extraction ability for small targets and enables the model to converge quickly under the conditions of few samples. Secondly, Shape_IOU is utilized to calculate the training loss, and the shape regression loss of the bounding box itself is considered to enhance the robustness of the model. The experimental results fully proved the effectiveness of the YOLO-STOD detection method, which constantly surpasses the competing methods and achieves 91.2%, 91.9%, and 190.966 detection accuracy and detection speed in terms of recall, Map value, and FPS, respectively, which is able to satisfy the needs of industrial real-time detection and is expected to be used in the real-time detection of conveyor belt tearing in the industrial field.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] ETSR-YOLO: An improved multi-scale traffic sign detection algorithm based on YOLOv5
    Liu, Haibin
    Zhou, Kui
    Zhang, Youbing
    Zhang, Yufeng
    PLOS ONE, 2023, 18 (12):
  • [22] Cow Detection Model Based on Improved YOLOv5
    Wang, Wei
    Xie, Mujun
    Jiang, Changhong
    Zheng, Zhong
    Bian, Heyu
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1704 - 1708
  • [23] Research on improved algorithm for helmet detection based on YOLOv5
    Shan, Chun
    Liu, Hongming
    Yu, Yu
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [24] Fabric defect detection algorithm based on improved YOLOv5
    Li, Feng
    Xiao, Kang
    Hu, Zhengpeng
    Zhang, Guozheng
    VISUAL COMPUTER, 2024, 40 (04): : 2309 - 2324
  • [25] Research on Mask Wearing Detection Algorithm Based on YOLOv5
    Beijing Institute of Fashion Technology, Basic Teaching Department, Beijing, China
    不详
    Proc. IEEE Int. Conf. Inf. Technol., Big Data Artif. Intell., ICIBA, 1600, (625-630):
  • [26] An insulator target detection algorithm based on improved YOLOv5
    Zeng, Bing
    Zhou, Zhihao
    Zhou, Yu
    He, Dilin
    Liao, Zhanpeng
    Jin, Zihan
    Zhou, Yulu
    Yi, Kexin
    Xie, Yunmin
    Zhang, Wenhua
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] A Smoke Detection Model Based on Improved YOLOv5
    Wang, Zhong
    Wu, Lei
    Li, Tong
    Shi, Peibei
    MATHEMATICS, 2022, 10 (07)
  • [28] Improved Small Object Detection Algorithm Based on YOLOv5
    Xu, Bo
    Gao, Bin
    Li, Yunhu
    IEEE INTELLIGENT SYSTEMS, 2024, 39 (05) : 57 - 65
  • [29] Vehicle And Pedestrian Detection Algorithm Based on Improved YOLOv5
    Sun, Jiuhan
    Wang, Zhifeng
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [30] An Improved Distraction Behavior Detection Algorithm Based on YOLOv5
    Zhou, Keke
    Zheng, Guoqiang
    Zhai, Huihui
    Lv, Xiangshuai
    Zhang, Weizhen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (02): : 2571 - 2585