Effect of induction heat treatment on microstructure, mechanical and corrosion properties of stainless steel 308 L fabricated using wire arc additive manufacturing

被引:0
|
作者
Yangfan Sun [1 ]
Xianglong Li [4 ]
Lai Xu [1 ]
Hongyao Shen [2 ]
Yougen Liu [1 ]
机构
[1] Zhejiang University,The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering
[2] Zhejiang University,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering
[3] Hangzhou Wheeler General Machinery Incorporated Co.,undefined
[4] Ltd,undefined
[5] Zhejiang Advanced CNC Machine Tool Technology Innovation Center,undefined
关键词
Wire arc additive manufacturing (WAAM); Induction heat treatment; Mechanical properties; Corrosion resistance;
D O I
10.1038/s41598-024-75382-5
中图分类号
学科分类号
摘要
Induction solution heat treatment can change the mechanical characteristics and corrosion resistance properties of 308 L manufactured via wire arc additive manufacturing (WAAM). Moreover, compare with traditional heat treatment methods, this method can reduce heat treatment time and achieve in-situ local heat treatment. In this paper, in-situ induction heat treatment at 1100 °C for 2, 4, and 6 min were applied on 308 L thin-walled parts produced by WAAM. The result show that ferrite and austenite phase proportions were changed after induction solution heat treatment. Heat treatment at 1100 °C effectively reduced the δ-Fe and σ-Fe content, resulting in a slight decrease in UTS and microhardness, while YS and EL have a certain degree of increase. σ-Fe exhibits a more pronounced strengthening effect than austenite, albeit at the potential expense of steel’s elasticity. At the same time, induction heat treatment alters the ferrite to austenite ratio, which also enhances the anti-corrosion properties of the stainless steel. However, the presence of σ-Fe will cause a worsening of the corrosion resistance of the steel. In addition, as the heat treatment progresses, the ferrite’s microstructure in the deposition direction undergoes a significant transformation, changing from continuous dendrites to a few equiaxed grains.
引用
收藏
相关论文
共 50 条
  • [21] Effects of Heat Treatment on Microstructure and Properties of 347 Stainless Steel Alloy Prepared by Wire Arc Additive Manufacturing
    Yadegar, Ali
    Sharifitabar, Mahmood
    Afarani, Mahdi Shafiee
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (01)
  • [22] Microstructure and mechanical properties of 304L steel fabricated by arc additive manufacturing
    Ji, Lei
    Lu, Jiping
    Liu, Changmeng
    Jing, Chenchen
    Fan, Hongli
    Ma, Shuyuan
    2017 INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING (EITCE 2017), 2017, 128
  • [23] Microstructure and Mechanical Properties of AISI 420 Stainless Steel Produced by Wire Arc Additive Manufacturing
    Lunde, Jonas
    Kazemipour, Mostafa
    Salahi, Salar
    Nasiri, Ali
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 413 - 424
  • [24] Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing
    Chen X.
    Zhang S.
    Ran X.
    Huang Z.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2020, 41 (05): : 42 - 49
  • [25] Evolutions of microstructure and mechanical property of 308L stainless steel repaired by the local dry underwater wire arc additive manufacturing
    Liao, Haipeng
    Wang, Zhenmin
    Chi, Peng
    Zhang, Bin
    Ding, Tao
    Zhang, Qin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 898
  • [26] Microstructure and mechanical properties of 17-4 PH stainless steel fabricated by gas metal wire arc additive manufacturing
    Mohammadi, Javad
    Dashtgerd, Iman
    An, Sola
    Trinh, Billythong
    Mostafaei, Amir
    Riahi, A. Reza
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [27] 253MA heat-resistant stainless steel by wire arc additive manufacturing: microstructure and mechanical properties
    Guo, Chun
    Zhang, XinYu
    Yao, ZongYu
    Li, WenQing
    Li, Yun
    Chen, YanYan
    Huang, GuangCan
    Lin, QingCheng
    CANADIAN METALLURGICAL QUARTERLY, 2024,
  • [28] Microstructure Evolution and Mechanical Properties of Ferrite-Austenite Stainless Steel Bimetals Fabricated via Wire Arc Additive Manufacturing
    Wang, Xinghua
    Wu, Yanming
    Sun, Lei
    Hu, Chenghui
    Li, Zhi
    Liu, Liming
    Meng, Wei
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (03)
  • [29] Microstructures and mechanical properties of stainless steel component deposited with 308L wire by hot wire plasma arc additive manufacturing process
    Feng Y.
    Tang R.
    Liu S.
    Chen Q.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2021, 42 (05): : 77 - 83
  • [30] Microstructure and corrosion behaviour of structural steel fabricated by wire arc additive manufacturing (WAAM)
    Dong, Zheng
    Torbati-Sarraf, Hamidreza
    Huang, Cheng
    Xu, Ke
    Gu, Xiang-Lin
    Fu, Chuanqing
    Liu, Xingjian
    Meng, Zhou
    MATERIALS & DESIGN, 2024, 244