Convergence Analysis of a Picard–CR Iteration Process for Nonexpansive Mappings

被引:0
|
作者
Bashir Nawaz [1 ]
Kifayat Ullah [1 ]
Krzysztof Gdawiec [2 ]
机构
[1] University of Lakki Marwat,Department of Mathematics
[2] University of Silesia in Katowice,Institute of Computer Science
关键词
Hybrid iteration process; Nonexpansive mapping; Fixed point; Polynomiography; Strong and weak convergence; Data dependency;
D O I
10.1007/s00500-025-10515-0
中图分类号
学科分类号
摘要
This paper proposes a novel hybrid iteration process, namely the Picard–CR iteration process. We apply the proposed iteration process for the numerical reckoning of fixed points of generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-nonexpansive mappings. We establish weak and strong convergence results of generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-nonexpansive mappings. This study demonstrates the superiority of the hybrid approach in terms of convergence speed. Moreover, we numerically compare the proposed iteration process with other well-known ones from the literature. In the comparison, we consider two problems: finding a fixed point of a generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-nonexpansive mapping and finding roots of a complex polynomial. In the second problem, we use the so-called polynomiography in the analysis. The results showed that the proposed iteration scheme is better than other three-parameter iteration schemes from the literature. Using the proven fixed-point results, we also obtain solutions to fractional differential equations.
引用
收藏
页码:435 / 455
页数:20
相关论文
共 50 条
  • [31] On the Convergence of Composite Implicit Iteration Process with Errors for Asymptotically Nonexpansive Mappings in the Intermediate Sense
    Banerjee, S.
    Choudhury, B. S.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2014, 4 (02): : 43 - 57
  • [32] ON THE CONVERGENCE THEOREMS OF AN IMPLICIT ITERATION PROCESS FOR ASYMPTOTICALLY QUASI I-NONEXPANSIVE MAPPINGS
    Yildirim, Isa
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (06): : 617 - 626
  • [33] Convergence Analysis of an Accelerated Iteration for Monotone Generalized α-Nonexpansive Mappings with a Partial Order
    Chen, Yi-An
    Wen, Dao-Jun
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [34] New iteration process for pseudocontractive mappings with convergence analysis
    Balwant Singh Thakur
    Rajshree Dewangan
    Mihai Postolache
    Fixed Point Theory and Applications, 2015
  • [35] New iteration process for pseudocontractive mappings with convergence analysis
    Thakur, Balwant Singh
    Dewangan, Rajshree
    Postolache, Mihai
    FIXED POINT THEORY AND APPLICATIONS, 2015, : 1 - 14
  • [36] (α, β)-NONEXPANSIVE MAPPINGS AND PICARD OPERATORS
    Amini-Harandi, A.
    Goli, M.
    Hajisharifi, H. R.
    FIXED POINT THEORY, 2024, 25 (01): : 163 - 170
  • [37] Strong Convergence of a Modified Halpern's Iteration for Nonexpansive Mappings
    Hu, Liang-Gen
    FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
  • [38] Convergence analysis for a new two-step iteration process for G-nonexpansive mappings with directed graphs
    Tanakit Thianwan
    Damrongsak Yambangwai
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [39] Strong convergence of iteration algorithms for a countable family of nonexpansive mappings
    Song, Yisheng
    Zheng, Yunchun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3072 - 3082
  • [40] Strong Convergence of Modified Iteration Processes for Relatively Nonexpansive Mappings
    Kim, Tae-Hwa
    Lee, Hwa-Jung
    KYUNGPOOK MATHEMATICAL JOURNAL, 2008, 48 (04): : 685 - 703