Systematic inference of super-resolution cell spatial profiles from histology images

被引:0
|
作者
Zhang, Peng [1 ]
Gao, Chaofei [1 ]
Zhang, Zhuoyu [1 ]
Yuan, Zhiyuan [2 ,3 ,4 ]
Zhang, Qian [1 ]
Zhang, Ping [5 ]
Du, Shiyu [6 ]
Zhou, Weixun [7 ]
Li, Yan [8 ]
Li, Shao [1 ]
机构
[1] Tsinghua Univ, Inst TCM X, BNRist Dept Automat, Bioinformat Div,MOE Key Lab Bioinformat, Beijing, Peoples R China
[2] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
[3] Fudan Univ, MOE Key Lab Computat Neurosci & Brain Inspired Int, Shanghai, Peoples R China
[4] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[5] Wangjing Hosp, China Acad Chinese Med Sci, Dept Pathol, Beijing, Peoples R China
[6] China Japan Friendship Hosp, Dept Gastroenterol, Beijing, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Pathol, Beijing, Peoples R China
[8] Wannan Med Coll, Affiliated Hosp 1, Dept Tradit Chinese Med, Wuhu, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLE-CELL;
D O I
10.1038/s41467-025-57072-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inferring cell spatial profiles from histology images is critical for cancer diagnosis and treatment in clinical settings. In this study, we report a weakly-supervised deep-learning method, HistoCell, to directly infer super-resolution cell spatial profiles consisting of cell types, cell states and their spatial network from histology images at the single-nucleus-level. Benchmark analysis demonstrates that HistoCell robustly achieves state-of-the-art performance in terms of cell type/states prediction solely from histology images across multiple cancer tissues. HistoCell can significantly enhance the deconvolution accuracy for the spatial transcriptomics data and enable accurate annotation of subtle cancer tissue architectures. Moreover, HistoCell is applied to de novo discovery of clinically relevant spatial organization indicators, including prognosis and drug response biomarkers, across diverse cancer types. HistoCell also enable image-based screening of cell populations that drives phenotype of interest, and is applied to discover the cell population and corresponding spatial organization indicators associated with gastric malignant transformation risk. Overall, HistoCell emerges as a powerful and versatile tool for cancer studies in histology image-only cohorts.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Super-resolution of Defocus Blurred Images
    Seyyedyazdi S.J.
    Hassanpour H.
    Hassanpour, H. (h.hassanpour@shahroodut.ac.ir), 1600, Materials and Energy Research Center (33): : 539 - 545
  • [22] Super-resolution on Remote Sensing Images
    Yang, Yuting
    Lam, Kin-Man
    Dong, Junyu
    Sun, Xin
    Jian, Muwei
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2021, 2021, 11766
  • [23] A SUPER-RESOLUTION ALGORITHM FOR SAR IMAGES
    DELVES, LM
    PRYDE, GC
    LUTTRELL, SP
    INVERSE PROBLEMS, 1988, 4 (03) : 681 - 703
  • [24] Comparative study on super-resolution of images
    Ibrahim, I. I.
    Ahmed, M. K.
    Nossair, Z. B.
    Allam, F. A.
    2006 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS, 2006, : 220 - +
  • [25] Super-resolution algorithms for SAR images
    Guglielmi, V
    Castanie, F
    Piau, P
    IMAGE RECONSTRUCTION AND RESTORATION II, 1997, 3170 : 195 - 202
  • [26] Super-resolution for in situ Plankton Images
    Ma, Wenqi
    Chen, Tao
    Zhang, Zhengwen
    Yang, Zhenyu
    Dong, Chao
    Qiao, Jianping
    Li, Jianping
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3676 - 3685
  • [27] Super-resolution reconstruction of hyperspectral images
    Akgun, T
    Altunbasak, Y
    Mersereau, RM
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) : 1860 - 1875
  • [28] Super-resolution of Defocus Blurred Images
    Seyyedyazdi, S. J.
    Hassanpour, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 539 - 545
  • [29] SPATIAL DENSITY ESTIMATION BASED SEGMENTATION OF SUPER-RESOLUTION LOCALIZATION MICROSCOPY IMAGES
    Chen, Kuan-Chieh Jackie
    Yang, Ge
    Kovacevic, Jelena
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 867 - 871
  • [30] Improving the spatial resolution of solar images using super-resolution diffusion generative adversarial networks
    Song, Wei
    Ma, Ying
    Sun, Haoying
    Zhao, Xiaobing
    Lin, Ganghua
    ASTRONOMY & ASTROPHYSICS, 2024, 686