Systematic inference of super-resolution cell spatial profiles from histology images

被引:0
|
作者
Zhang, Peng [1 ]
Gao, Chaofei [1 ]
Zhang, Zhuoyu [1 ]
Yuan, Zhiyuan [2 ,3 ,4 ]
Zhang, Qian [1 ]
Zhang, Ping [5 ]
Du, Shiyu [6 ]
Zhou, Weixun [7 ]
Li, Yan [8 ]
Li, Shao [1 ]
机构
[1] Tsinghua Univ, Inst TCM X, BNRist Dept Automat, Bioinformat Div,MOE Key Lab Bioinformat, Beijing, Peoples R China
[2] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
[3] Fudan Univ, MOE Key Lab Computat Neurosci & Brain Inspired Int, Shanghai, Peoples R China
[4] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[5] Wangjing Hosp, China Acad Chinese Med Sci, Dept Pathol, Beijing, Peoples R China
[6] China Japan Friendship Hosp, Dept Gastroenterol, Beijing, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Pathol, Beijing, Peoples R China
[8] Wannan Med Coll, Affiliated Hosp 1, Dept Tradit Chinese Med, Wuhu, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLE-CELL;
D O I
10.1038/s41467-025-57072-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inferring cell spatial profiles from histology images is critical for cancer diagnosis and treatment in clinical settings. In this study, we report a weakly-supervised deep-learning method, HistoCell, to directly infer super-resolution cell spatial profiles consisting of cell types, cell states and their spatial network from histology images at the single-nucleus-level. Benchmark analysis demonstrates that HistoCell robustly achieves state-of-the-art performance in terms of cell type/states prediction solely from histology images across multiple cancer tissues. HistoCell can significantly enhance the deconvolution accuracy for the spatial transcriptomics data and enable accurate annotation of subtle cancer tissue architectures. Moreover, HistoCell is applied to de novo discovery of clinically relevant spatial organization indicators, including prognosis and drug response biomarkers, across diverse cancer types. HistoCell also enable image-based screening of cell populations that drives phenotype of interest, and is applied to discover the cell population and corresponding spatial organization indicators associated with gastric malignant transformation risk. Overall, HistoCell emerges as a powerful and versatile tool for cancer studies in histology image-only cohorts.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Innovative super-resolution in spatial transcriptomics: a transformer model exploiting histology images and spatial gene expression
    Zhao, Chongyue
    Xu, Zhongli
    Wang, Xinjun
    Tao, Shiyue
    MacDonald, William A.
    He, Kun
    Poholek, Amanda C.
    Chen, Kong
    Huang, Heng
    Chen, Wei
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [2] Super-Resolution from Corneal Images
    Nitschke, Christian
    Nakazawa, Atsushi
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [3] Spatial super-resolution of colored images by micro mirrors
    Dahan, Daniel
    Yaacobi, Ami
    Pinsky, Ephraim
    Zalevsky, Zeev
    JOURNAL OF OPTICS, 2018, 20 (06)
  • [4] SUPER-RESOLUTION: AN EFFICIENT METHOD TO IMPROVE SPATIAL RESOLUTION OF HYPERSPECTRAL IMAGES
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    Ulfarsson, M.
    Jutten, C.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2003 - 2006
  • [5] Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology
    Zhang, Daiwei
    Schroeder, Amelia
    Yan, Hanying
    Yang, Haochen
    Hu, Jian
    Lee, Michelle Y. Y.
    Cho, Kyung S.
    Susztak, Katalin
    Xu, George X.
    Feldman, Michael D.
    Lee, Edward B.
    Furth, Emma E.
    Wang, Linghua
    Li, Mingyao
    NATURE BIOTECHNOLOGY, 2024, 42 (09) : 1372 - 1377
  • [6] Super-resolution from unregistered onmidirectional images
    Arican, Zafer
    Frossard, Pascal
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 164 - 167
  • [7] Super-resolution images from blurred observations
    Yau, AC
    Ng, MK
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIII, 2003, 5205 : 328 - 335
  • [8] Super-resolution from highly undersampled images
    Vandewalle, R
    Sbaiz, L
    Vetterli, M
    Süsstrunk, S
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 701 - 704
  • [9] Super-Resolution Microscopy from Standard Images
    Vazquez G.D.B.
    Lacapmesure A.M.
    Toscani M.
    Martínez S.
    Martínez O.E.
    Optics and Photonics News, 2020, 31 (12): : 58
  • [10] Spatial and frequency-based super-resolution of ultrasound images
    Wu, Mon-Ju
    Karls, Joseph
    Duenwald-Kuehl, Sarah
    Vanderby, Ray, Jr.
    Sethares, William
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2014, 2 (03): : 146 - 156