Study of stable dark energy stars in Hořava–Lifshitz gravity

被引:0
|
作者
Krishna Pada Das [1 ]
Ujjal Debnath [1 ]
机构
[1] Indian Institute of Engineering Science and Technology,Department of Mathematics
来源
关键词
D O I
10.1140/epjc/s10052-025-14059-3
中图分类号
学科分类号
摘要
We study the structure and basic physical properties of non-rotating dark energy stars in Hořava–Lifshitz (HL) gravity. The interior of proposed stellar structure is made of isotropic matter obeys extended Chaplygin gas EoS. The structure equations representing the state of hydrostatic equilibrium i.e., generalize TOV equation in HL gravity is numerically solved by using chosen realistic EoS. Next, we investigate the deviation of physical features of dark energy stars in HL gravity as compared with general relativity (GR). Such investigation is depicted by varying a parameter ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}, whereas for ω→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \rightarrow \infty $$\end{document} HL coincide with GR. As a result, we find that necessary features of our stellar structure are significantly affected by ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} in HL gravity specifically on the estimation of the maximum mass and corresponding predicted radius of the star. In conclusion, we can predict the existence of heavier massive dark energy stars in the context of HL gravity as compared with GR with not collapsing into a black hole. Moreover, we investigate the stability of our proposed stellar system. By integrating the modified perturbations equations in support of suitable boundary conditions at the center and the surface of the stellar object, we evaluate the frequencies and eigenfunctions corresponding to six lowest excited modes. Finally, we find that physically viable and stable dark energy stars can be successfully discussed in HL gravity by this study.
引用
收藏
相关论文
共 50 条
  • [41] U(1) Invariant F(R̀ƒ) Hořava-Lifshitz gravity
    Klusoň, J.
    Nojiri, S.
    Odintsov, S.D.
    Sáez-Gómez, D.
    European Physical Journal C, 2011, 71 (07): : 1 - 16
  • [43] Inflation in general covariant Hořava-Lifshitz gravity without projectability
    Tao Zhu
    Yongqing Huang
    Anzhong Wang
    Journal of High Energy Physics, 2013
  • [44] Modified dispersion relations in Hořava–Lifshitz gravity and Finsler brane models
    Sergiu I. Vacaru
    General Relativity and Gravitation, 2012, 44 : 1015 - 1042
  • [45] Mixmaster universe in the z = 3 deformed Hořava-Lifshitz gravity
    Yun Soo Myung
    Yong-Wan Kim
    Woo-Sik Son
    Young-Jai Park
    Journal of High Energy Physics, 2010
  • [46] Conformal traceless decomposition of lagrange multiplier modified Hořava–Lifshitz Gravity
    Josef Klusoň
    General Relativity and Gravitation, 2015, 47
  • [47] Dynamical System Approach and Thermodynamical Perspective of Hořava-Lifshitz Gravity
    Samaddar, Amit
    Singh, S. Surendra
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2024, 72 (06):
  • [48] Hawking radiation of black holes in infrared modified Hořava–Lifshitz gravity
    Jun-Jin Peng
    Shuang-Qing Wu
    The European Physical Journal C, 2010, 66 : 325 - 331
  • [49] On Hoava-Lifshitz cosmology
    CHEN Bin1) Department of Physics
    Chinese Physics C, 2011, (05) : 429 - 435
  • [50] Renormalization group flow of Hořava-Lifshitz gravity at low energies
    Adriano Contillo
    Stefan Rechenberger
    Frank Saueressig
    Journal of High Energy Physics, 2013