首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
From samples to persistent stratified homotopy types
被引:0
|
作者
:
Mäder T.
论文数:
0
引用数:
0
h-index:
0
机构:
Institute for Mathematics, University of Heidelberg, INF 205, Heidelberg
Institute for Mathematics, University of Heidelberg, INF 205, Heidelberg
Mäder T.
[
1
]
Waas L.
论文数:
0
引用数:
0
h-index:
0
机构:
Institute for Mathematics, University of Heidelberg, INF 205, Heidelberg
Institute for Mathematics, University of Heidelberg, INF 205, Heidelberg
Waas L.
[
1
]
机构
:
[1]
Institute for Mathematics, University of Heidelberg, INF 205, Heidelberg
来源
:
Journal of Applied and Computational Topology
|
2024年
/ 8卷
/ 3期
关键词
:
55-XX;
55N31;
55P99;
Homotopy theory;
Persistent homology;
Stratified spaces;
Topological data analysis;
D O I
:
10.1007/s41468-024-00170-z
中图分类号
:
学科分类号
:
摘要
:
The natural occurrence of singular spaces in applications has led to recent investigations on performing topological data analysis (TDA) in a stratified framework. In many applications, there is no a priori information on what points should be regarded as singular or regular. For this purpose we describe a fully implementable process that provably approximates the stratification for a large class of two-strata Whitney stratified spaces from sufficiently close non-stratified samples. Additionally, in this work, we establish a notion of persistent stratified homotopy type obtained from a sample with two strata. In analogy to the non-stratified applications in TDA which rely on a series of convenient properties of (persistent) homotopy types of sufficiently regular spaces, we show that our persistent stratified homotopy type behaves much like its non-stratified counterpart and exhibits many properties (such as stability, and inference results) necessary for an application in TDA. In total, our results combine to a sampling theorem guaranteeing the (approximate) inference of (persistent) stratified homotopy types of sufficiently regular two-strata Whitney stratified spaces. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
引用
收藏
页码:761 / 838
页数:77
相关论文
共 50 条
[21]
RATIONAL HOMOTOPY TYPES OF COFIBRATIONS
SHIGA, H
论文数:
0
引用数:
0
h-index:
0
机构:
RYUKYU UNIV,COLL SCI,DEPT MATH,NAGAGUSU KU,OKINAWA,JAPAN
RYUKYU UNIV,COLL SCI,DEPT MATH,NAGAGUSU KU,OKINAWA,JAPAN
SHIGA, H
ASTERISQUE,
1984,
(113-)
: 298
-
302
[22]
Homotopy types of topological stacks
Noohi, Behrang
论文数:
0
引用数:
0
h-index:
0
机构:
Univ London, Sch Math Sci, London E1 4NS, England
Univ London, Sch Math Sci, London E1 4NS, England
Noohi, Behrang
ADVANCES IN MATHEMATICS,
2012,
230
(4-6)
: 2014
-
2047
[23]
Complements of resultants and homotopy types
Yamaguchi, K
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Electrocommun, Dept Math, Chofu, Tokyo 182, Japan
Univ Electrocommun, Dept Math, Chofu, Tokyo 182, Japan
Yamaguchi, K
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY,
1999,
39
(04):
: 675
-
684
[24]
Homotopy Types of Frobenius Complexes
Tounai, Shouta
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Tounai, Shouta
ANNALS OF COMBINATORICS,
2017,
21
(02)
: 317
-
329
[25]
Homotopy classification of elliptic operators on stratified manifolds
V. E. Nazaikinskii
论文数:
0
引用数:
0
h-index:
0
机构:
Russian Academy of Sciences,Institute for Problems of Mechanics
V. E. Nazaikinskii
A. Yu. Savin
论文数:
0
引用数:
0
h-index:
0
机构:
Russian Academy of Sciences,Institute for Problems of Mechanics
A. Yu. Savin
B. Yu. Sternin
论文数:
0
引用数:
0
h-index:
0
机构:
Russian Academy of Sciences,Institute for Problems of Mechanics
B. Yu. Sternin
Doklady Mathematics,
2006,
73
: 407
-
411
[26]
Homotopy types of box complexes
Csorba, Peter
论文数:
0
引用数:
0
h-index:
0
机构:
Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
Csorba, Peter
COMBINATORICA,
2007,
27
(06)
: 669
-
682
[27]
On Homotopy Types of Alexandroff Spaces
Michał Jerzy Kukieła
论文数:
0
引用数:
0
h-index:
0
机构:
Nicolaus Copernicus University,Faculty of Mathematics and Computer Science
Michał Jerzy Kukieła
Order,
2010,
27
: 9
-
21
[28]
Homotopy Types of Frobenius Complexes
Shouta Tounai
论文数:
0
引用数:
0
h-index:
0
机构:
The University of Tokyo,Graduate School of Mathematical Sciences
Shouta Tounai
Annals of Combinatorics,
2017,
21
: 317
-
329
[29]
Models for torsion homotopy types
Casacuberta, C
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Autonoma Barcelona, Dept Math, Bellaterra 08193, Spain
Univ Autonoma Barcelona, Dept Math, Bellaterra 08193, Spain
Casacuberta, C
Rodríguez, JL
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Autonoma Barcelona, Dept Math, Bellaterra 08193, Spain
Rodríguez, JL
Paricio, LJH
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Autonoma Barcelona, Dept Math, Bellaterra 08193, Spain
Paricio, LJH
ISRAEL JOURNAL OF MATHEMATICS,
1998,
107
(1)
: 301
-
318
[30]
REGULAR RATIONAL HOMOTOPY TYPES
BODY, R
论文数:
0
引用数:
0
h-index:
0
机构:
INST HAUT ETUD SCI,35 RTE CHARTRES,BURES YVETTE,FRANCE
INST HAUT ETUD SCI,35 RTE CHARTRES,BURES YVETTE,FRANCE
BODY, R
COMMENTARII MATHEMATICI HELVETICI,
1975,
50
(01)
: 89
-
92
←
1
2
3
4
5
→