Unsupervised machine learning clustering approach for hospitalized COVID-19 pneumonia patients

被引:0
|
作者
Nuttinan Nalinthasnai [1 ]
Ratchainant Thammasudjarit [2 ]
Tanapat Tassaneyasin [1 ]
Dararat Eksombatchai [3 ]
Somnuek Sungkanuparph [1 ]
Viboon Boonsarngsuk [3 ]
Yuda Sutherasan [1 ]
Detajin Junhasavasdikul [1 ]
Pongdhep Theerawit [1 ]
Tananchai Petnak [4 ]
机构
[1] Mahidol University,Division of Pulmonary and Pulmonary Critical Care Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital
[2] Srinakharinwirot University,Department of Computer Science, Faculty of Science
[3] Chakri Naruebodindra Medical Institute,Faculty of Medicine Ramathibodi Hospital
[4] Mahidol University,Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital
[5] Mahidol University,undefined
关键词
COVID-19; Pneumonia; Clustering analysis; Machine learning; Mortality;
D O I
10.1186/s12890-025-03536-w
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Unsupervised Machine Learning to Identify Convalescent COVID-19 Phenotypes
    Adamo, Sarah
    Ricciardi, Carlo
    Ambrosino, Pasquale
    Maniscalco, Mauro
    Biancardi, Arcangelo
    Cesarelli, Giuseppe
    Donisi, Leandro
    D'Addio, Giovanni
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA 2022), 2022,
  • [22] Intensity of anticoagulation and survival in patients hospitalized with COVID-19 pneumonia
    Hsu, Andrew
    Liu, Yuchen
    Zayac, Adam S.
    Olszewski, Adam J.
    Reagan, John L.
    THROMBOSIS RESEARCH, 2020, 196 : 375 - 378
  • [23] Machine Learning Consensus Clustering Approach for Hospitalized Patients with Dysmagnesemia
    Thongprayoon, Charat
    Sy-Go, Janina Paula T.
    Nissaisorakarn, Voravech
    Dumancas, Carissa Y.
    Keddis, Mira T.
    Kattah, Andrea G.
    Pattharanitima, Pattharawin
    Vallabhajosyula, Saraschandra
    Mao, Michael A.
    Qureshi, Fawad
    Garovic, Vesna D.
    Dillon, John J.
    Erickson, Stephen B.
    Cheungpasitporn, Wisit
    DIAGNOSTICS, 2021, 11 (11)
  • [24] Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning
    Boussen, Salah
    Cordier, Pierre-Yves
    Malet, Arthur
    Simeone, Pierre
    Cataldi, Sophie
    Vaisse, Camille
    Roche, Xavier
    Castelli, Alexandre
    Assal, Mehdi
    Pepin, Guillaume
    Cot, Kevin
    Denis, Jean-Baptiste
    Morales, Timothee
    Velly, Lionel
    Bruder, Nicolas
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142
  • [25] A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2
    Bottrighi, Alessio
    Pennisi, Marzio
    Roveta, Annalisa
    Massarino, Costanza
    Cassinari, Antonella
    Betti, Marta
    Bolgeo, Tatiana
    Bertolotti, Marinella
    Rava, Emanuele
    Maconi, Antonio
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [26] A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2
    Alessio Bottrighi
    Marzio Pennisi
    Annalisa Roveta
    Costanza Massarino
    Antonella Cassinari
    Marta Betti
    Tatiana Bolgeo
    Marinella Bertolotti
    Emanuele Rava
    Antonio Maconi
    BMC Medical Informatics and Decision Making, 22
  • [27] Machine Learning Approach For Clustering Of Countries To Identify The Best Strategies To Combat Covid-19
    Darapaneni, Narayana
    Venkatasubramanian, J.
    Paduri, Anwesh Reddy
    Kumar, Prashant
    Vigneswar, S.
    Thangeda, Krishna Chaitanya
    Thakur, Abhaya
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 839 - 845
  • [28] Development of a machine learning algorithm to predict intubation among hospitalized patients with COVID-19
    Arvind, Varun
    Kim, Jun S.
    Cho, Brian H.
    Geng, Eric
    Cho, Samuel K.
    JOURNAL OF CRITICAL CARE, 2021, 62 : 25 - 30
  • [29] Mortality predictors in patients with COVID-19 pneumonia: a machine learning approach using eXtreme Gradient Boosting model
    N. Casillas
    A. M. Torres
    M. Moret
    A. Gómez
    J. M. Rius-Peris
    J. Mateo
    Internal and Emergency Medicine, 2022, 17 : 1929 - 1939
  • [30] Mortality predictors in patients with COVID-19 pneumonia: a machine learning approach using eXtreme Gradient Boosting model
    Casillas, N.
    Torres, A. M.
    Moret, M.
    Gomez, A.
    Rius-Peris, J. M.
    Mateo, J.
    INTERNAL AND EMERGENCY MEDICINE, 2022, 17 (07) : 1929 - 1939