Tunable interfacial properties of monolayer GeSb2Te4 on metal surfaces

被引:0
|
作者
Li, Jiahui [1 ]
Zhang, Chengqi [1 ]
Wan, Xiaoying [1 ]
Zhang, Zhaofu [2 ,3 ]
Wang, Qingbo [1 ]
Wang, Hai [1 ]
Liu, Jun [4 ]
Zhong, Hongxia [1 ,5 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Suzhou Inst, Suzhou 215123, Jiangsu, Peoples R China
[4] Xincun Technol Wuhan Co LTD, Wuhan 430075, Peoples R China
[5] China Univ Geosci, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Schottky barrier height; Fermi-level pinning; interfacial interaction; metal contact; PHASE-CHANGE MATERIALS; FILMS;
D O I
10.1088/1361-6463/ad7ffb
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atomically thin monolayer (ML) GeSb2Te4 (GST) holds promising prospects in non-volatile memory applications because of its high non-homogeneous crystallization rate. In GST-based devices, the interaction between GST and metals is crucial, as it affects the electronic properties. Herein, based on first-principles calculations, we investigate the interaction and Schottky barrier height of contacts formed by the combination of ML GST with various metals. It is found that the interfaces of GST with Pt, Pd, Ir and W exhibit strong interaction, characterized by large binding energies ranging from 1.394 to 1.015 eV, and the interfaces between GST and Cu, Ag and Au display weak interaction. For the seven contacts, Ag and W form Ohmic contacts with ML GST, while Cu, Au, Pd, Ir, and Pt form n-type Schottky contacts, with Schottky barrier heights ranging from 0.029 to 0.353 eV. The strong Fermi level pinning at GST-metal interface is observed with a pinning factor of 0.378. Additionally, altering the interfacial distance and optimizing the layers of GST enable a transition from Ohmic contact to Schottky contact. These findings provide crucial guidance for the design and optimization of electronic devices based on phase change materials like GST.
引用
收藏
页数:7
相关论文
共 50 条
  • [32] Role of carbon-rings in polycrystalline GeSb2Te4 phase-change material
    Wang, Guanjie
    Zhou, Jian
    Elliott, Stephen R.
    Sun, Zhimei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 852 - 858
  • [33] Theoretical investigation of the electronic structure and thermoelectric performance of 2D GeSb2Te4 and GeBi2Te4
    Fang, Wen-yu
    Rao, Xiao-Xiao
    Cheng, Jun
    Xue, Ping
    Sheng, Xiao-fei
    Liu, Chun-jing
    Zhang, Peng-cheng
    VACUUM, 2023, 216
  • [34] Rietveld Refinement Study of GeSb2Te4 Bulks Prepared Through Distinct Melting Profiles
    Kaur, Jashangeet
    Tripathi, S. K.
    Ankush
    Sharma, Manish Dev
    Kanika
    Goyal, Navdeep
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (09) : 9524 - 9528
  • [35] Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory (vol 80, 115209, 2009)
    Park, Jun-Woo
    Eom, Seung Hwan
    Lee, Hosun
    Da Silva, Juarez L. F.
    Kang, Youn-Seon
    Lee, Tae-Yon
    Khang, Yoon Ho
    PHYSICAL REVIEW B, 2009, 80 (16):
  • [36] GeSb2Te4薄膜表面分形维数计算及表征
    朱守星
    朱世根
    范真
    丁建宁
    摩擦学学报, 2005, (02) : 149 - 153
  • [37] Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes
    Gotoh, T
    Sugawara, K
    Tanaka, K
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 299 : 968 - 972
  • [38] ELECTRONIC DIELECTRIC-CONSTANTS OF CRYSTALLINE AND AMORPHOUS GESB2TE4 AND GE2SB2TE5 SEMICONDUCTORS
    YOKOTA, R
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1989, 28 (08): : 1407 - 1411
  • [39] Nature of the Local Environment of Atoms in Ge3Sb2Te6, Ge2Sb2Te5, GeSb2Te4, and GeSb4Te7 Amorphous and Crystalline Films
    Bordovsky, G. A.
    Marchenko, A. V.
    Nasredinov, F. S.
    Petrushin, Yu. A.
    Seregin, P. P.
    GLASS PHYSICS AND CHEMISTRY, 2023, 49 (01) : 50 - 56
  • [40] Octahedral structure of liquid GeSb2Te4 alloy:: First-principles molecular dynamics study
    Bichara, Christophe
    Johnson, Mark
    Gaspard, Jean Pierre
    PHYSICAL REVIEW B, 2007, 75 (06):