Machine learning methods for speech emotion recognition on telecommunication systemsMachine learning methods for speech emotion recognition on telecommunication systemsA. Osipov et al.

被引:0
|
作者
Alexey Osipov [1 ]
Ekaterina Pleshakova [1 ]
Yang Liu [2 ]
Sergey Gataullin [3 ]
机构
[1] MIREA - Russian Technological University,
[2] Xidian University,undefined
[3] Moscow Technical University of Communications and Informatics,undefined
关键词
Artificial intelligence; Neural networks; Engineering; CapsNet; Smart bracelet; Photoplethysmogram; Speech emotion recognition;
D O I
10.1007/s11416-023-00500-2
中图分类号
学科分类号
摘要
The manuscript is devoted to the study of human behavior in stressful situations using machine learning methods, which depends on the psychotype, socialization and a host of other factors. Global mobile subscribers lost approximately $53 billion in 2022 due to phone fraud and unwanted calls, with almost half (43%) of subscribers having spam blocking or caller ID apps installed. Phone scammers build their conversation focusing on the behavior of a certain category of people. Previously, a person is introduced into a state of acute stress, in which his further behavior to one degree or another can be manipulated. We were allowed to single out the target audience by research by Juniper Research. These are men under the age of 44 who have the highest risk of being deceived by scammers. This significantly narrows the scope of research and allows us to limit the behavioral features of this particular category of subscribers. In addition, this category of people uses modern gadgets, which allows researchers not to consider outdated models; has stable health indicators, which allows not to conduct additional studies of people with diseases of the heart system, because. Their percentage in this sample is minimal; and also most often undergoes a polygraph interview, for example, when applying for a job, and this allows us to get a sample sufficient for training the neural network. To teach the method, polygrams were used, marked by a polygraph examiner and a psychologist of healthy young people who underwent a scheduled polygraph test for company loyalty. For testing, the readings of the PPG sensor built into the smart bracelet were taken and analyzed within a month from young people who underwent a polygraph test. We have developed a modification of the wavelets capsular neural network—2D-CapsNet, allowing to identify the state of panic stupor by classification quality indicators: Accuracy—86.0%, Precision—84.0%, Recall = 87.5% and F-score—85.7%, according to the photoplethysmogram graph (PPG), which does not allow him to make logically sound decisions. When synchronizing a smart bracelet with a smartphone, the method allows real-time tracking of such states, which makes it possible to respond to a call from a telephone scammer during a conversation with a subscriber. The proposed method can be widely used in cyber-physical systems in order to detect illegal actions.
引用
收藏
页码:415 / 428
页数:13
相关论文
共 50 条
  • [1] Machine learning methods for speech emotion recognition on telecommunication systems
    Osipov, Alexey
    Pleshakova, Ekaterina
    Liu, Yang
    Gataullin, Sergey
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2023, 20 (03) : 415 - 428
  • [2] SPEECH EMOTION RECOGNITION WITH ENSEMBLE LEARNING METHODS
    Shih, Po-Yuan
    Chen, Chia-Ping
    Wu, Chung-Hsien
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2756 - 2760
  • [3] Machine Learning Approach for Emotion Recognition in Speech
    Gjoreski, Martin
    Gjoreski, Hristijan
    Kulakov, Andrea
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2014, 38 (04): : 377 - 383
  • [4] Emotion Recognition On Speech Signals Using Machine Learning
    Ghai, Mohan
    Lal, Shamit
    Duggal, Shivam
    Manik, Shrey
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), 2017, : 34 - 39
  • [5] Speech based Emotion Recognition using Machine Learning
    Deshmukh, Girija
    Gaonkar, Apurva
    Golwalkar, Gauri
    Kulkarni, Sukanya
    PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 812 - 817
  • [6] Applying Machine Learning Techniques for Speech Emotion Recognition
    Tarunika, K.
    Pradeeba, R. B.
    Aruna, P.
    2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
  • [7] Representation Learning for Speech Emotion Recognition
    Ghosh, Sayan
    Laksana, Eugene
    Morency, Louis-Philippe
    Scherer, Stefan
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 3603 - 3607
  • [8] Speech Emotion Recognition with Deep Learning
    Harar, Pavol
    Burget, Radim
    Dutta, Malay Kishore
    2017 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2017, : 137 - 140
  • [9] Transfer Learning for Speech Emotion Recognition
    Han Zhijie
    Zhao, Huijuan
    Wang, Ruchuan
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 96 - 99
  • [10] Connecting Subspace Learning and Extreme Learning Machine in Speech Emotion Recognition
    Xu, Xinzhou
    Deng, Jun
    Coutinho, Eduardo
    Wu, Chen
    Zhao, Li
    Schuller, Bjoern W.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (03) : 795 - 808