Machine Learning Approach for Emotion Recognition in Speech

被引:0
|
作者
Gjoreski, Martin [1 ]
Gjoreski, Hristijan [1 ]
Kulakov, Andrea [2 ]
机构
[1] Jozef Stefan Inst, Dept Intelligent Syst, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Fac Comp Sci & Engn, Skopje 1000, Macedonia
来源
关键词
machine learning; emotions; speech; recognition; Auto-WEKA;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a machine learning approach to automatic recognition of human emotions from speech. The approach consists of three steps. First, numerical features are extracted from the sound database by using audio feature extractor. Then, feature selection method is used to select the most relevant features. Finally, a machine learning model is trained to recognize seven universal emotions: anger, fear, sadness, happiness, boredom, disgust and neutral. A thorough ML experimental analysis is performed for each step. The results showed that 300 (out of 1582) features, as ranked by the gain ratio, are sufficient for achieving 86% accuracy when evaluated with 10 fold cross-validation. SVM achieved the highest accuracy when compared to KNN and Naive Bayes. We additionally compared the accuracy of the standard SVM (with default parameters) and the one enhanced by Auto-WEKA (optimized algorithm parameters) using the leave-one-speaker-out technique. The results showed that the SVM enhanced with Auto-WEKA achieved significantly better accuracy than the standard SVM, i.e., 73% and 77% respectively. Finally, the results achieved with the 10 fold cross-validation are comparable and similar to the ones achieved by a human, i.e., 86% accuracy in both cases. Even more, low energy emotions (boredom, sadness and disgust) are better recognized by our machine learning approach compared to the human.
引用
收藏
页码:377 / 383
页数:7
相关论文
共 50 条
  • [1] Distinctive Approach for Speech Emotion Recognition Using Machine Learning
    Singh, Yogyata
    Neetu
    Rani, Shikha
    [J]. MACHINE LEARNING, IMAGE PROCESSING, NETWORK SECURITY AND DATA SCIENCES, MIND 2022, PT I, 2022, 1762 : 39 - 51
  • [2] Speech emotion recognition using multimodal feature fusion with machine learning approach
    Panda, Sandeep Kumar
    Jena, Ajay Kumar
    Panda, Mohit Ranjan
    Panda, Susmita
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42763 - 42781
  • [3] Speech emotion recognition using multimodal feature fusion with machine learning approach
    Sandeep Kumar Panda
    Ajay Kumar Jena
    Mohit Ranjan Panda
    Susmita Panda
    [J]. Multimedia Tools and Applications, 2023, 82 : 42763 - 42781
  • [4] Speech based Emotion Recognition using Machine Learning
    Deshmukh, Girija
    Gaonkar, Apurva
    Golwalkar, Gauri
    Kulkarni, Sukanya
    [J]. PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 812 - 817
  • [5] Emotion Recognition On Speech Signals Using Machine Learning
    Ghai, Mohan
    Lal, Shamit
    Duggal, Shivam
    Manik, Shrey
    [J]. PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), 2017, : 34 - 39
  • [6] Applying Machine Learning Techniques for Speech Emotion Recognition
    Tarunika, K.
    Pradeeba, R. B.
    Aruna, P.
    [J]. 2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
  • [7] Connecting Subspace Learning and Extreme Learning Machine in Speech Emotion Recognition
    Xu, Xinzhou
    Deng, Jun
    Coutinho, Eduardo
    Wu, Chen
    Zhao, Li
    Schuller, Bjoern W.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (03) : 795 - 808
  • [8] SPEECH EMOTION RECOGNITION-A DEEP LEARNING APPROACH
    Asiya, U. A.
    Kiran, V. K.
    [J]. PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 867 - 871
  • [9] Emotion Recognition from Speech: An Unsupervised Learning Approach
    Rovetta, Stefano
    Mnasri, Zied
    Masulli, Francesco
    Cabri, Alberto
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 23 - 35
  • [10] Speech Emotion Recognition Using Machine Learning: A Comparative Analysis
    Nath S.
    Shahi A.K.
    Martin T.
    Choudhury N.
    Mandal R.
    [J]. SN Computer Science, 5 (4)