Bi-intercalated epitaxial graphene on SiC(0001)

被引:0
|
作者
Wolff, Susanne [1 ,2 ]
Hutter, Mark [3 ,4 ,5 ]
Schaedlich, Philip [1 ,2 ]
Yin, Hao [3 ,4 ,5 ]
Stettner, Monja [3 ,4 ,5 ]
Wenzel, Sabine [3 ,4 ]
Tautz, F. Stefan [3 ,4 ,5 ]
Bocquet, Francois C. [3 ,4 ]
Seyller, Thomas [1 ,2 ]
Kumpf, Christian [3 ,4 ,5 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, Tech Phys, Reichenhainer Str 70, D-09126 Chemnitz, Germany
[2] Tech Univ Chemnitz, Ctr Mat Architectures & Integrat Nano Membranes MA, Rosenbergstr 6, D-09126 Chemnitz, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst PGI 3, D-52425 Julich, Germany
[4] Julich Aachen Res Alliance JARA Fundamentals Futur, D-52425 Julich, Germany
[5] Rhein Westfal TH Aachen, Experimentalphys 4 A, D-52074 Aachen, Germany
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 10期
关键词
epitaxial graphene; bismuth intercalation; angular resolved photoemission; x-ray standing waves; low energy electron microscopy; ELECTRONIC-PROPERTIES; RADII; LEED; VAN;
D O I
10.1088/1367-2630/ad7f7d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The intercalation of graphene with suitable atomic species is one of the most frequently applied methods to decouple the graphene layer from the substrate in order to establish the classical electronic properties of graphene. In this context, we studied the bismuth (Bi) intercalation of the (63x63)R30 degrees reconstructed so-called 'zeroth layer graphene' on SiC (0001). As reported earlier by Sohn et al (2021 J. Korean Phys. Soc. 78 157) two phases are formed depending on the amount of intercalated Bi, which in turn is controlled by the annealing temperature: The alpha phase, showing a (1x1) periodicity with respect to the substrate, and, at higher temperatures, the (3x3) reconstructed beta phase. We characterise both phases and the transformation from the alpha to the beta phase by photoelectron spectroscopy, normal incidence x-ray standing waves, electron diffraction and electron microscopy. We clearly see an almost complete intercalation of the graphene layers in both phases, with strong (covalent) interaction between the topmost Si atoms of the substrate and the Bi intercalant, but only weak (van der Waals) interaction between Bi and the graphene layer. The n-doping of the graphene found for the alpha phase decreases continuously during the phase transformation, in agreement with a reduced density of the Bi intercalating layer. Missing core level shifts of the surface species as well as the normal incidence x-ray standing waves results indicate that all surface Si atoms remain saturated during the transition and no dangling bonds are formed. Low energy electron microscopy and diffraction reveal the coexistance of both phases after annealing to intermediate temperatures and allow a quantitative analysis of island sizes and numbers.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Vertical structure of Sb-intercalated quasifreestanding graphene on SiC(0001)
    Lin, You-Ron
    Wolff, Susanne
    Schaedlich, Philip
    Hutter, Mark
    Soubatch, Serguei
    Lee, Tien-Lin
    Tautz, F. Stefan
    Seyller, Thomas
    Kumpf, Christian
    Bocquet, Francois C.
    PHYSICAL REVIEW B, 2022, 106 (15)
  • [32] Structural and electronic properties of Li-intercalated graphene on SiC(0001)
    Caffrey, Nuala M.
    Johansson, Leif I.
    Xia, Chao
    Armiento, Rickard
    Abrikosov, Igor A.
    Jacobi, Chariya
    PHYSICAL REVIEW B, 2016, 93 (19)
  • [33] Noninvasive coupling of PbPc monolayers to epitaxial graphene on SiC(0001)
    Nguyen, T. T. Nhung
    Aprojanz, J.
    Jaeger, M.
    Ha Nguyen, T. N.
    Tegenkamp, C.
    SURFACE SCIENCE, 2019, 686 : 45 - 51
  • [34] Chemically Resolved Interface Structure of Epitaxial Graphene on SiC(0001)
    Emery, Jonathan D.
    Detlefs, Blanka
    Karmel, Hunter J.
    Nyakiti, Luke O.
    Gaskill, D. Kurt
    Hersam, Mark C.
    Zegenhagen, Joerg
    Bedzyk, Michael J.
    PHYSICAL REVIEW LETTERS, 2013, 111 (21)
  • [35] Modulating doping and interface magnetism of epitaxial graphene on SiC(0001)
    Zhou, Pan
    He, Da-Wei
    CHINESE PHYSICS B, 2016, 25 (01)
  • [36] Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001)
    Emery, Jonathan D.
    Wheeler, Virginia H.
    Johns, James E.
    McBriarty, Martin E.
    Detlefs, Blanka
    Hersam, Mark C.
    Gaskill, D. Kurt
    Bedzyk, Michael J.
    APPLIED PHYSICS LETTERS, 2014, 105 (16)
  • [37] Modulating doping and interface magnetism of epitaxial graphene on SiC(0001)
    周攀
    何大伟
    Chinese Physics B, 2016, 25 (01) : 774 - 780
  • [38] Band Engineering and Magnetic Doping of Epitaxial Graphene on SiC (0001)
    Jayasekera, Thushari
    Kong, B. D.
    Kim, K. W.
    Nardelli, M. Buongiorno
    PHYSICAL REVIEW LETTERS, 2010, 104 (14)
  • [39] Local enhancement of inelastic tunnelling in epitaxial graphene on SiC(0001)
    Cervenka, J.
    van de Ruit, K.
    Flipse, C. F. J.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12): : 2992 - 2996
  • [40] Theoretical Study of Epitaxial Graphene Growth on SiC(0001) Surfaces
    Kageshima, Hiroyuki
    Hibino, Hiroki
    Nagase, Masao
    Yamaguchi, Hiroshi
    APPLIED PHYSICS EXPRESS, 2009, 2 (06)